- LOAN DOCUMENT

JUSTIFICATION

BY

DISTRIBUTION/
AVAILABILITY CODES
DISTRIBUTION JAVAILABILITY AND/OR SPECIAL

PHOTOGRAPH THIS SHEET
(- .
O=
— 5 INVENTORY
o= LEVEL
o= |
M= g WL - T -0 -5
N= 3 DOCUMENT IDENTIFICATION
L= = RSN
a
; DISTRIBUTION STATEMENT
. NTIS GRAA&L ﬂL
pTIC TRAC (o]
UNANNOUNCED a

== O Z > =

-\ T

DATE ACCESSIONED

DISTRIBUTION STAMP

HEPO ID=E-~=

I X X

DATE RETURNED

91-06506
IR

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

REGISTERED OR CERTIFIED NUMBER

e
DTIC ™™ TJ0A DOCUMPFNT PROCESSING SHEET

JUN 90
LOAN DOCUMENT

STOCX IS EXHAUSTED

lﬂﬂzm m I Iﬁ EA’ EI: E‘H) L:H '

WL-TR-91-8025

9 000
\\||\I\\$|\|\\|I|\\\\l\l\\\l\\\\li\\\ll\\\I\\

1/
&

S\

&)

=

PRODUCT DEFINITION DATA INTERFACE (PDDI)

Access Software User's Manual

McDonnell Aircraft Company
McDonnell Douglas Corporation
P. 0. Box 516

St. Louis, MO 63166

July 1991

Final report

Approved for public release; distribution is unlimited.

MANUFACTURING TECHNOLOGY DIRECTORATE

WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

. ,‘ .-/ - - -~
o, A S e I My "y
ALAN R. WINN DATE
Project Manager
FOR THE COMMANDER:
J2eck ad- 72U Yo =/ % ? /
BRUCE A. RASMUSSEN, Chief DATE 7

Integration Technology Division
Manufacturing Technology Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee 1is no longer employed by your organization please
notify WL/MTIB , WPAFB, OH 45433-6533 to help us maintain a current
mailing list,

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document,

f

UNCLASSIFIED

L] TASSIFICATION M)

REPORT DOCUMENTATION PAGE

§7a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

———
1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE

| fzb.'oscuss_ma_no' N/ DOWNGRALING SCHEDULE

DISTRIBUTION UNLIMITED

['a. PERFORMING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
(if applicable)
McAir

McDonnell Aircraft Company

6b. OFFICE SYMBOL

O
S. MONITORING ORGANIZATION REPORT NUMBER(S)
WL-TR-91-8025

e

7a. NAME OF MONITORING ORGANIZATION
Manufacturing Technology Dir.
Wright Laboratory

(WL/MTIB)

6¢ ADDRESS (Gity, State, and Z/P Code)

McDonnell Douglas Corporation
P. 0. Box 516, St. Louis, M0 63166

7b. ADORESS (City, State, and ZIP Code)

Wright-Patterson AFB, OH 45433-6533

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

(f applicable)
F33615-82-C-5036
8c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
- i PROGRAM PROJECT TASK WORK UNIT
Wright Patterzgz3glgsggf‘ce Base, Ohio ELEMENT NO. [NO. NO. ACCESSION NO.
78011F 3095 06 29

11. TITLE (include Security Classification)

PRODUCT DEFINITION DATA INTERFACE (PDDI), Access Software User's Manual

12. PERSONAL AUTHOR(S)
(see reverse side

13a. TYPE OF REPORT
Final
16. SUPPLEMENTARY NOTATION

13b. TiIME COVERED
FROM T0

14. DATE OF REPORT (Year, Month, Day) pS. PAGE COUNT
July 1991 144

17 COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Produce Definition Data
Life Cycle Document
Engrg./Mfg: Interface

ICAM Architecture
CAD/CAM
(continued on back)

(PDDI) Extensions contract.
to use the PDDI Access Software.

the PDDI Translator. &

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This document is the Access Software User's Manual for the Product Definition Data Interface
This document provides procedures for Application Programmers
User's Manual UM560130000A provides procedures for use of

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
B uncLassiriepuNumiTED O saMEe as RPT.

TI0TIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

228. NAME OF RESPONSIBLE INDIVIDUAL
Alan Winn

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
(513) 255-8787 WL/MTIB

DD FORM 1473, 84 MaR

83 APR edition may be used until exhaysted.
. All other edrtions are obsolete.

SECURITY CLASSIFICATION OF “HIS PAGE
UNCLASSIFIED

UNCLASSIFIED

12. Personal Author(s):

18.

Chi, Kelly
Baldridge, Gary
Magnuson, Charles

.Mehl, Kenneth

Qakes, Janet
Shreve, Edward
Ulmer, Beth
White, George

Subject Terms:

Needs Analysis Document
System Requirement Document
State-of-the-Art Document
System Specification Document
SS - Draft Standard

System Design Specification
Product Specification
Operators Manual

Users Manual - Translator

UM 560130001
1 January 1987

FOREWORD

This document was produced under Air Force Contract F33615-82-C-5036,
Product Definition Data Interface (PDDI). This contract is sponsored by the
Air Force Wright Aeronautical Laboratories, Materials Laboratory, Air Force
Systems Command, Wright-Patterson, Air Force Base, Ohio.

This program is being administered under the technical direction of Lt.
Eric Gunther, ICAM Project Manager. The MCAIR Program Manager is Mr. Jerry
Weiss and Mr. Herb Ryan is the Deputy Program Manager.

This document was prepared in accordance with the ICAM Configuration
Management Life Cycle Documentation requirements for the Configuration Item.

1ii

1.0

2.0

3.0

4.0

FOREWORD ¢ v ¢ v i vttt e o e o e o oo o

SCOPE

1.1 IDENTIFICATION.
1.2 INTRODUCTION. v v v v v v v v

REFERENCES

2.1 APPLICABLE DOCUMENTS.
2.1.1 SPECIFICATION
2.1.2 STANDARDS

SYSTEM OVERVIEW

WO~ U WM =

NTERFACE OPERATIONS
.2 INITIALIZATION/OELETION OF THE ACCESS SOFTWARE

el e e kol K K _E X W 3 o o by WWWWWW W
. . . . L] o . . L] L] .

Lo rbB2aLWWWWWWW
L] [] . - .

N WN—

iv

INTROOUCTION.« o oo v oL
SYSTEM INTERFACES
SYSTEM ENVIRONMENT.
PHYSICAL SCHEMAS.
SOFTWARE PACKAGES
TRANSLATOR. o v v v v v v o e e e
MODEL ACCESS SOFTWARE
DATA ITEMS.

« o s
e & e o
s e e o
a e e o
e s s e
s & e e
s o o e
o s o
¢« o o o

.1 INTRODUCTION. v v v v v v i v v v v e v e e
ENVIRONMENT
ENTITY OPERATIONS
.1 CREATE OPERATIONS
.2 GET OPERATIONS.
.3 UPDATE OPERATIONS
.; DELETE OPERATIONS
.6

e o s e
o o s o
e e o =
e o o
e o o e

ACTIVATE OPERATIONS
APPLICATION FLAG OPERATIONS
LISTOPERATIONS
BOOLEAN OPERATIONS.
STRUCTURE OPERATIONS.
GENERAL OPERATIONS.
DELETE OPERATIONS
EDIT OPERATIONS v o v ¢ v o«
SEQUENTIAL READ AND EXECUTE OPERATIONS.

UM 560130001
1 January 1987

ont ot frod Purnd Puod
]
Pt et Grad Db ot

[

I I
) bt Pt Pt ot P

3 '
—t gt OO 3 LTV N PN\ s st 4t ps

W

1
~SERAWLUYH 88 WMNN = 00~ W =
NN NO NWMN WO OO

F o W R R R R Rk K K P = WWWwWwWwwwwwww NN N
[

UM 560130001
1 January 1987

TABLE OF CONTENTS
Page

5.0 GENERAL UTILITIES 5-1

6.0 SAMPLE PROGRAMS 6-1
7.0 APPENDICES |

CALLING PARAMETER INDEX A-1

ROUTINE INDEX v v v v v v v v o v e oo e e B-1

RETURN CODE INDEX v v v v v v v v v v v o c-1

FORTRAN SCHEMA DIAGRAM. D-1

PASCAL SCHEMA DIAGRAM E-1

GENERAL TECHNIQUES/GUIDELINES F-1

RUN-TIME ENVIRONMENT. G-1

MAS ERROR AND WARNING RETURN CODE INDEX H-1

UM 560130001
1 January 1987

USER'S MANUAL
SECTION 1
SCOPE

1.1 Identification

This User’s Manual provides a guide for the use of ACCESS Software
developed for the Product Definition Data Interface (PDDI) Project 5601. This
project was developed under Air Force Contract F33516-82-C-5036.

1.2 Introduction
Capabilities documented in this manual include:

o Access Software Initialization
0o Entity Operations
o List Operations

This PDDI software operates on IBM 43xx, 308xx or DEC VAX 11/780
computers. The environmental requirements are described in Section 3.

The PDDI system documentation does not address local (native) system or
computing environment documentation.

This manual addresses IBM procedures and terminology only.

1.3 Qther system Manuals

The associated Operator’s Manual (OM) describes the system operation and
installation procedures. It is intended for use by computer operators and
programming personnel.

An associated User’s Manual (UM 560130000) is provided for users of the
PDDI Translator.

The PDDI Product Specification (PS) provides routine descriptions, data
dictionary listings and PDDI system messages for system maintenance purposes.

1.4 Approach

This User’s Manual is divided into six (6) main sections:

1-1

UM 560130001
1 January 1987

Scope of this document.

Reference documentation applicable to PDDI and this
document.

The PDDI architecture at a high level and introduction to
the use of the Access Software.

Entity and List Operations needed to access the data
structures passed back to the Application program.

Descriptions of the general utilities routines available
with the Access Software.

Sample programs using the Access Software in Pascal and
FORTRAN.

Access Software Calling Parameter Index
Alphabetical Access Software Routine Index
Access Software Return Code Index

Access Software FORTRAN Schema Diagram
Access Software Pascal Schema Diagram
General Techniques/Guidelines

Run-Time Environment

Error and Warning Return Code Index

2.1 Applicable Documents
2.1.1 Specification:

D0D-D-10008
MIL-D-5840

2.1.2 Standards:

ANSI Y14.5
ANSI Y14.26M
ANSI B46.1
ANSI B92.1
DOD-STD-100C
MIL-STD-9
MIL-STD-12
1DS150120000C
IEEE STD 829

1S0/7C184/SC4/WG1

2.1.3 OQther Publications:

CLD150120000
FTR110210000U
FTR110232000UV

UM 560130001
1 January 1987

Drawings, Engineering and Associated Lists
Requirements for Data, Engineering and Technical
Reproduction

Dimensioning and Tolerancing

Digital Representation
Communication of Production
Definition Data

Surface Texture (Surface Roughness,
Waviness and Lay)

Involute Splines and Inspection

Engineering Drawing Practices

Screw Thread Conventions and Methods
of Specifying

Abbreviations for Use on Drawings,
Specifications, Standards and in
Technical Documents .

ICAM Documentation Standards

Standards for Software Test
Documentation

4.2:2 The Step File Structure (Working Paper
Version 1.0 28 April 1981

ICAM Document Catalog

ICAM Architecture

ICAM Architecture Part II, Automated
IDEFO Development

2-1

UM 560130001
1 January 1987

Product Definition Data Interface
1TR560130001U First Interim Technical Report
(Period 1 Oct 82 - 31 Dec 82)
ITR560130002V Second Interim Technical Report
(Period 1 Jan 83 - 31 Mar 83)
ITR560130003U Third Interim Technical Report
(Period 1 Apr 83 - 30 June 83)
ITR560130004U Fourth Interim Technical Report
(Period 1 Jul 83 - 30 Sep 83
ITRS560130005U Fifth Interim Technical Report
(Period 1 Oct 83 - 1 Dec 83)
ITR560230006U Sixth Interim Technical Report
(Period 1 Jan 84 - 31 Mar 84)
ITR560130007U Seventh Interim Technical Report
(Period 1 Apr 84 - 30 Jun 84)
1TR560130008V Eightﬁ Interim Technical Report
(Period 1 Jul 84 - 30 Sep 84)
ITR560130009V Ninth Interim Technical Report
(Period 1 Oct 84 - 31 Dec 84)
ITR560130010U Tenth Interim Technical Report
(Period 1 Jan 84 - 31 Mar 85)
FTR560130001U Task I, Final Technical Report -

SD 560130001V
NAD560130000
SAD560130000
SRD560130000

System Test Methodology, Volume III
Technicai Operating Report -
Product Assurance/Quality
Assurance - 15 Qct 85

Scoping Document

Needs Analysis Document
State-of-the-Art Document

System Requirement Document

2-2

UM 560130001
1 January 1987

S0S560130000 System Design Specification Document

$S 560130100 System Specification Document

SS 560130200 System Specification Document -
Draft Standard

STP560130000 System Test Plan

STR560130000 System Test Report

PS 560130000 Product Specification

OM 560130000 Operator’s Manual

UM 560130000 User’s Manual (Translator)

2.2 Terms and Abbreviations

The following 1ist explains terminology, acronyms, and other abbreviations
used in this document.

ACCESS SOFTWARE - A set of routines for creating, managing and querying an
incore Working Form model.

ANS] - American National Standard Institute.

APPLICATION - Refers generically to any software modules which are used in
CAD/CAM functions.
APPLICATION REQUEST - A request initiated by an application program, either

through batch or interactive processing, which will interrogate the model
through the PDDI Access Software to obtain or operate on specific information
regaruing the model and its components or elements.

APPLICATION REQUESTED DATA - The data which fulfills the application’s original
request and which is in the proper format and readable by the application.

ASCII - American Standard Code for Information Interchange.

- An item of information about an entity. A key attribute identifies
the entity; a role iterate gives a fact about an entity.

CAD/CAM - Computer Aided Design/Computer Aided Manufacturing.
CLASS - A collection of entities that are alike in some manner.
CLIST - IBM Command 1ists.

- A specific instance of an entity that is used in the definition
of some other antity.

2-3

UM 560130001
1 January 1987

CONTEXT-FREE GRAMMAR - The syntax of the language gives a precise specification
of the data without interpretation of it, '

DOMAIN - The set of values permissible in a given context. A gg;yrgl_ggmgig is
the value set native to a given machine architecture; an imposed domain is a
specific subset of the natural domain.

N - The allocation (and deallocation) of memory resources as
required by the application. The opposite is static allocation where a fixed
size segment of memory is available to the application.

EBCDIC - Extended Binary Coded Decimal Interchange Code (IBM character set).
ENTITY - A collection of facts (attributes) about something of interest.

EXTERNAL REFERENCE - A reference to some quantity of data that exists somewhere
outside the scope of the immediate body of information.

EUNCTIONALITY - (1) To show that the configuration item has fulfilled the
specified requirements. (2) The receiving and sending systems can operate on
th? entity in the same manner with the same results within a pre-defined
tolerance.

INCLUDE FILE - Pascal source code from another file or library included on the
compilation of a Pascal source file. '

INPUT DATA - That information which the application needs to supply in order to
interrogate or operate on the model. This data may assume only these forms
prescribed by the PODI Access Software specifications.

INTERPRETED REQUEST - Input data which has been appropriately modified to
conform to the PDDI Access Software’s internal data representation so that it
may be further processed.

JCL - Job Control Language - IBM language used to identify a job and describe
its requirements to an operating system.

KEY - An item of data that uniquely identifies some specific instance of an
entity.

MAS - MCAIR’s acronym for the PDDI Access Software (Model Access System).

METAMODEL - A body of data that defines the characteristics of a data model or
structure.

MODEL - A collection of PDD that is transferable, displayable, accessible, and
equivalent to a Part. The internal representation of the application data, as
initiated and organized by the user, The model is also referred to as the
Working Form.

2-4

UM 560130001
1 January 1987

MODEL NETWORK DEFINITION - The set of rules and definitions which outline in
detail the data structure whereby higher order entities may be composed of
lower order entities, or constituents, and the lower order entities may be
constituents of one or more higher order entities.

NATIVE SYSTEM - The POD and applications in a format that is unique to the
database of a CAD system.

PARSE - The process of analyzing input strings (records) to identify fields and
to verify that the data has a valid format.

POD - Product Definition Data.

POST-PROCESSOR - A phase of the translator where data is received from the
Exchange Format and is converted to the Working Form.

PRE-P - A phase of the translator where data is taken from the Working
Form and is converted to the Exchange Format.

QUALITY - The composite of all the attributes or characteristics including
performance of an item or product.

- The planned and systematic establishment of all actions
(management/engineering} necessary to provide adequate confidence and
nonconformance prevention provisions and reviews are established during the
d:sign phase and performed throughout the software development and life cycle
phases.

- The planned and systematic application of all actions
(management/technical) necessary to control raw materials or products through
the use of test, inspect, evaluate, and control of processes.

REQUESTED DATA - See Application Request Data.

- The Translator sub-package which provides the communication
interface between the user and the pre/post-processors.

SCHEMA - Those definitions "which describe the content of the data and the
relationship between the various elements or components of the data.

SOFTWARE QUALITY ASSURANCE (SQA) - The planned and systematic establishment of
all actions necessary to provide adequate confidence that nonconformance
prevention provisions and reviews are established during the design pnase and
performed throughout the software development and 1ife cycle phases.

- An organized description of the
methods, policies, and procedures necessary to conduct software quality
assurance and control activities during the design, development, delivery, and
maintenance phases.

2-5

UM 560130001
1 January 1987

SOFTWARE QUALITY CONTROL - The planned and systematic application of all
actions (management/technical) necessary to ensure that the software under
development or maintenance satisfies the technical requirements through the use
of tests, demonstrations, inspections, evaluations, and control of processes.

SYSTEM CONSTRAINTIS - Those hardware and software environmental constraints
which will be imposed upon the PDDI Access Software that will Tlimit its
implementation and application. An example of such constraints might be the
particular compiler used to compile the PDDI- Access Software package.

JRANSE - The data required to make an exchange of data between systems
(e.g., delimiters, record counts, record length, erntity counts, numeric
precision).

TRANSLATOR - A software MECHANISM that is used for passing data between the
Exchange Format and Working Form of the PDD.

JREE - A collection of the data that makes up an instance of an entity. The
information is stored as records in a linked list.

JREE STRUCTURE - The arrangement of information within a tree.

IS0 - Time Sharing Option - IBM function which provides conversational time
sharing from remote terminals.

USER COMPUTER SYSTEM - The specific hardware, operating systems, an‘
applications software systems that the user will employ to implement the PDD.
Access Software.

WORKING FORM - A memory resident form of a model that supports rapid access to
entities via the Access Software.

WORKING FORMAT - The physical representation of the Working Form within the
computer,

2-6

UM 560130001
1 January 1987

SECTION 3
SYSTEM OVERVIEMW

3.1 Introduction

The purpose of the PDDI Software System is to provide a prototype for the
communication of complete Production Definition Data (PDD) between dissimilar
CAD/CAM Systems. This system will serve as the information interface between
Engineering and Manufacturing functions. It is composed of Access Software,
Conceptual Schema, Exchange format and a Translator. (See Figure 3-1).

The Access Software is a set of callable utility programs that will allow
applications to manipulate and query PDD. The Conceptual Schema contains the
human readable data needed to define a CAD/CAM model. The Exchange Format is a
neutral physical sequential format for passing data between dissimilar
systems. The PDDI Translator is the software mechanism for passing this data
between the Exchange Format and the Working Form of the PODD.

3.2 $System Interfaces

The PDDI software must interface with the computer system on which it is
installed, the 1local (native) CAD/CAM database, the Exchange Format, the
Working Form, and the user (application). It does this via PDDI Access
Software, the PDDI Translator and local (native) developed software packages.
Note: Simple 1interim database software is included in the Translator
software. This software is an interim program to be used until an interface to
the native database system is available. See Appendix D for an explanation.
Figure 3-3 shows the environment in which the PODI system was developed. This
figure also shows the versatility of the system and the multi-hardware
environment in which it may be used. The left-hand side of Figure 3-3 shows
the PDDI development environment.

3.3 System Environment

The PDDI system was developed in the following computing environment:

Compyter/Operating Svstem

IBM 43XX/MVS with TSO and associated tape drives, disk drives and
terminals.

DEC VAX 11/780 VMS with associated tape drives, disk drives and terminals.

3-1

UM 560130001
1 January 1987

Oefine Needs
for]
Manufacturing
Data T
From 7
Engineering
Select Parts 71
Walk Through Logical
Description
Needs Analysis of Data
Prioritize (00":'9'".'
Oocument Schema)

Exchange Format

Data
Organization

/| Data Organization \|

Specitic PDDI Sl;lll)c(l)l'lc
Part Model Pant
Mode!

Applications Pos%"x:’:” Transiator

Figure 3-1 PDDI System Architecture

UM 560130001
1 January 1987

Storage (Core) Requirements

The minimum core requirements for the PDDI software and database is 1.0M
plus the size of the modei. (The PODI Mechined Rib model required .57M)

* pDDI Machine Rib

Compilers

IBM-PASCAL/VS Release 2.2
DEC-PASCAL V3.3, FORTRAN 77 V4.4

Terminals

E&S PS300 (or equivalent for graphics applications)
IBM 3270 (or equivalent)

The PDDI system is transportable to other computing systems. However,
appropriate local (native) interfaces (translator) must be provided. The
right-hand side of Figure 3-2 shows the PDDI commercial demonstration
architecture for UNIGRAPHICS and Computervision Systems.

3.4 Physical Schemas

The Working Form physical schema is determined through a data dictionary
or PASCAL include files. An explanation of the form and the use of these files
can be found in Appendix A. The Exchange Format physical schema is defined by
the PODI conceptual schema and the specification for the neutral file format.

3.5 Software Packages

The software for the system consists of two (2) packages - Access Software
and Translator.

3-3

}

Advanced

Geometry
‘; Modeler

CADD W/
Emulation

PDO
Editor

Mig
Application
With
Emulation

Color

Disk
Form

UM 560130001
1 January 1987

ICOMPUTER
VISION
Transiator

CADODS 4x
System

CAQA

ciC

Eng Link
{MCL) F-18
Canopy

AMPPS

)—-6------------------9

VAX

Figure 3-2 PDDI Environment

3-4

MD-MISCO
Unigraphics
Sysiem

| Unigraohics

Transialor

| Transiator

UTRC

1

CMPP
System

iy Y /| POOI Daliverables

UM 560130001
1 January 1987

3.6 TIranslator

The PDDI Translator is the software package used to format PDD for
transmission between systems. The Translator is broken up into three main
sub-packages. These sub-packages are: "Run System", "Pre-Processor" and
"Post-Processor”., (See Figure 3-3).

The Run System is the interface between the user and the "processors”.
This package provides menus, queries and system responses for the user.

Functions performed by this package include: Perform system configuration
activities, determine files needed by the processors and make them available,
and provide messages to aid user interfaces.

Access to the native database is also provided by this package via calls
to user-supplied routines. Data from this database is placed into or obtained
from the Working Form using calls to the Access Software. The pre-processor or
post-processor is then called to perform the desired translation.

The Pre-Processor provides the interface from the Working Form to the
Exchange Format.

Working Form entities, in the Working Form physical schema, are accessed
via the Access Software. Tables, obtained from the Run System, are then used
to map the Working Form entities to the Exchange Format physical schema. The
Ex?hange Format entities are then encoded and placed into the Exchange Format

ile.

Transfer data is collected during entity processing. This data is encoded
and placed into the Exchange Format file.

Error messages or condition codes are sent to the "Run System” to indicate
the status of the transfer.

The Post-Processor provides the interface from the Exchange Format to the
Working Form.

A set of tables, obtained from the Run System, is used to map the Exchange

Format entities to the Working Form physical schema. The Access Software is
then used to place these entities into the Working Form.

3-5

UM 560130001
1 January 1987

“u

PRE- | POS
PROCESSOR PROCESSOR

¥ TRANSLATOR

Figure 3-3 Translator Architecture

3-6

UM 560130001
1 January 1987

3.7 Model Access Software

The PODI Access Software is a set of Pascal procedures that maintains the
physical structure of related user data in computer memory. This user data is
referred to as the working form model. The package provides an interface to
the working form model for application programs to create, relate, and access
elements of user data.

The application programs are independent of the physical structure of the
stored data elements. This independence ensures that as different structure
techniques are implemented, the application programs need not change.

This package manages two types of data: entities and lists. An entity is an
element of data supplied by the application to be stored in the working form.
A list is a collection of entity keys. The package manages lists created by
the application in the working form.

The Access Software allows the structuring of the user data. The entities can
be related in user/constituent order. An entity may be related to multiple
user entities, creating a network structure in the working form. An entity may
also contain multiple constituent entities.

3-7

UM 560130001
1 January 1987

3.8 DATA ITEMS

The Access Software manages two types of data items within the working form -
Entities and Lists.

ENTITY

An entity is the principle data item managed by the Access Software, and is:

0 Defined by the conceptual schema in the application creating the
entity.

0 Accessed by a unique key return from the create entity function

0 A node in the working form structure containing an Attribute Data
Block(ADB), and references to other entities in Constituent
Relationships and/or User Relationships

AT T A

An Attribute Data Block(ADB) is a collection of data embedded in a single
contiguous block of memory. Individual pieces of data within an ADB are call
attributes. MAS manages only the first three items in the structure of an
ADB. These three attributes, KIND, LENGTH, and SYSUSE, are required in every
entity. A short description of each attribute follows:

KIND - Must be the first item defined in the ADB. The KIND defines the entity
type code. This code cannot be changed.

LENGTH - Must be the second item defined in the ADB. The LENGTH defines the
number of bytes in the ADB including KIND, LENGTH, and SYSUSE.

SYSUSE - One full word of system use data reserved for internal purposes. This
dataf is never used by the application, and should never be inspected or
modified.

NOTE: A1l other attribute data in the ADB is managed by the application
program.

3-8

UM 560130001
1 January 1987

CONSTITUENT RELATIONSHIP

A constituent entity is used in the definition of the user entity. Inclusive
constituents of an entity encompass all descendents, their descendents, and so
forth until there are no more descendents. For example in Figure 3-4, Point O
(PO) and Point 1 (P1) are constituents of Line 1.

LINE = ENTITY(5008);
IDENT : KEY T_IDENT;
DISPLA : T_DISPLAY;
PO : POINT;

Pl :_POINT; bye)
END_ENTITY;

["Pt

(
iﬁ
Y

—ain E T

N

nex

Nn

3-9

UM 560130001
1 January 1987

USER RELATIONSHIPS
A user entity uses constituent entities in its definition. Inclusive users of
an entity include all ancestors, their ancestors, and so forth until there are

no more ancestors. For example in Figure 1-1, Line 1 is a user of Point 0 (PO)
and Point 1 (P1).

LIST
A 1ist is a collection of entity keys which is:

o Created by the Application program.
0 Accessed by a unique 1ist key returned from the Create List Functions.

0 Used by the Application to store selected entity keys for subsequent
processing.

3-10

UM 560130001
1 January 1987

3.9 INTERFACE PARAMETERS

Each interface parameter has a name and a type. This information is shown as

follows:
DATA-NAME : DATA-TYPE.
ATA-

The following conventions are used to name parameters:
Keys are named KEY1, KEY2,...KEYN.
The ADB is named ENTDEF.

Text parameters are named according to thei= purpoce.

Integer parameters are named according to their purpose.

A return code is produced by every in*erface routine/operation. This
parameter is a full word integer and is aiways named IRC. (See Appendix for
a return code list.)

DATA-TYPE PARAMETERS

Data-Type parameters may be one of the following:
ANYKEY - Access key of an entity or list.
ENTBLOCK - Entity data block definition.
- In Pascal, probably declared as a record.
- In Fortran, declared as a common or dimension array.
CHARACTER - A single character as defined by the system.

INTEGER - A full word integer.

3-11

UM 560130001
1 January 1987

FORM Y

The following is a reference list of data-types for interface calls in this MAS
document.

ANYKEY = INTEGER
LISTKEY = ANYKEY
ENTKEY = ANYKEY
ORD_KIND = INTEGER
EXT_RET_CODE = INTEGER
LISTPSTN = INTEGER
LISTINDX = [NTEGER
LISTSIZE = INTEGER
ROUTINE = ARRAY(1...8) OF CHARACTER
NAMTYP = ARRAY(1l...6) OF CHARACTER
(ADB) ENTBLOCK = RECORD OF
KIND = ORD_KIND
SIZE = INTEGER
SYSUSE = INTEGER
DATA = (USER DEFINED)

PASCAL AP N

The formal declarations for the Access Software interface routines are
maintained in the member APL TYP of the library "CADS.FRMI.MASymmdd.INCLD"

Where:
y = year
mm = month
dd = day
of the latest Access Software release.

3-12

UM 560130001
1 January 1987

3.10 MEMORY MANAGER

A Model Access Memory Manager was developed to replace the PASCAL run-time
memory manager. It reduces the number of bytes of overhead required for
free-space collection, and isolates the working form model from all other
PASCAL dynamic allocations.

This memory manager is currently in the MAS package and requires no user
intervention for utilization.

3-13

UM 560130001
1 January 1987

8

™
’
-

INTRODKEIN

109
[}
< ¢ <

* & & & & s ¢

e & @& = & & & & & &

INITIAGERON/QELETION OF THE MAS ENVIRONMENT
m s & & - a s s e s . . ¢ e * o .
ouE. ..

ENTITYMBATIONS .

ooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

e #® 9 ® ® ® ¢ &« 9 ® e » & ¢ e & & o & s & & 2 2+ 2 2+ 2 2 >
L) @ e ® e ® © ¢ e € ¢ ® T & e e € ° ° o s+ s e o * * & s o+
.......... ¢ @ e e O ¢ ¢ * o ¢ 5 ¢ s * & ¢ ¢ > s s
¢ e @ e @ 8 e 9 ¢ e ¢ 8 e € e & » & 2 3 e B & & o 9 o
L] e @ e ¢ 9 o ¢ e & & S5 9 * & B o & 2 o 6 * o s o s o
e e o 4 o e o g ¢ & 6 e o & 9+ & € o ¢ 5 & 2+ e 8 v s e 2 * »
------------ ¢ e ¢ o o s o Y)Y o o e e e s o
..... L) . L Q....Q’Om.'.'.l..
¢ & e o & 6 4 & ¢ o 6 o e+ & 0 s . L = o o o o s s s o
e 6 & o ¢ 4 8 & o 0 ¢ @ e @& @ 9o e & s & M
.s-.-.c-.ocsgc-co.-s.con nnnnnnnn
¢ o 4 0 o 6 8 o 4 Uy o n-o.chQoOtc\ ooooo
;.cnoogcs.MQNQcQ\nanQWQQQ 00000
..........n.n.-...m.an
¢ 28R i wvm-tu mc,co mm..—
Y o
UL L LT R
ME > > Mmmm

= a — -

o w HIY Q.

(L. > O < Mr.ﬂ

LIST OPERAT

MALKL

MALRD

IONS

oooooooooo
oooooooooo

oooooooooo

oooooooooo

oooooooooo

oooooooooo

ooooooooooooo
..............
ooooooooooooo
oooooooooooooo

ooooooooooooo

ooooooooooooo

ooooooooooooo

ooooooooooooo

ooooooooooooo

ooooooooooooo

ooooooooooooo

.............
.............
.............
.............

ooooooooooooo

ooooooooooooo

4-2

UM 560130001
1 January 1987

4-42

4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
4-77
4-78
4-79
4-81
4-82

4.1 NTROQUCTION

UM 560130001
1 January 1987

The Entity Operations and List Operations sections provide the applications
programmer with the interface operations needed to access the data structures

passed back to the application program.

Schema Diagrams.)

(See appendix for Pascal and FORTRAN

Figure 4-1 illustrates the interrelationships of the Access Software interface

operations shown in these sections.

ADS List (of Keys)
IRC KEY

4 PDDI ACCESS SOFTWARE INTERFACE CPERATIONS)
L~ N
lacrzvary) - \poare) ==
Hm - ﬂ_} lLIST DELETE’
I |\ - ™ \IsT BooLeN) st
P, lsrmml ol
L READ/EXEC
v |
QS > LOVER LEVEL cPERATIONS o)/
- ' g
°] =
NORKING USER
coPY APPLICATION
Eiqure 4-1 Interface Operations

UM 560130001
1 January 1987

4.2 INITIALIZATION/DELETION OF THE MAS ENVIRONMENT

Two routines provide the interface used to initialize the Access Software.

The basic initialization operation (MAINIT) creates a working model and enables
the Access Software.

The MAKILL function is used to destroy the working model and disable the Access
Software.

An application does not have to install a data dictionary. It can create and
use entities on an ad hoc basis. If a data dictionary is not installed, the
following limitations are imposed:

1. Any entity type will be permitted.

2. The interface routines will not validate any operation other than
outright errors; e.g., defining an ADB with a negative length. The
application is - "on its own".

3. There will be no provision for organization of entities by class.

Included with the initialization and deletion operations descriptions that

follow are the error and warning messages that may be returned. Appendix A
contains a complete 1ist of these messages along with their numeric codes.

4-4

FUNCTION:
FORMAT:

DESCRIPTI

ERRORS :

NOTE:

MAINIT

Initialize the working model.
MAINIT (IRC)

INPUT:
None

OUTPUT:
IRC: INTEGER
The procedure return code.
ON: The working model will be inftialized.

The Access Software is enabled.

UM 560130001
1 January 1987

Message Explanation

MAS_INIT_FAILED Could not create schema and it.
root.

MAINIT_ALREADY_DONE Root already created.

NOT_ENOUGH_ROOM No more core memory.

Do not call MAINIT twice in succession. This will result in 2 Access
Software environments. Use a MAKILL to delete the current environment

before initializing another.

4-5

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

MAKILL

Delete the current working model.
MAKILL (IRC)

INPUT:
None

OUTPUT:
IRC: INTEGER

The procedure return code.

The entire working model is destroyed.

The Access Software is disabled.

None.

4-6

UM 560130001
1 January 1987

UM 560130001
1 January 1987

4.3 ENTITY OPERATIONS

The basic entity operations can be categorized by the following functions:

Activate

Create

Get

Delete

Update

Process Flags
Application Flags

A11 operations performed on entity constituent lists are done by list
operations, with the exception of creating an entity with constituents.

Included with the entity operations descriptions presented on the pages that

follow are the error and warning messages that may be returned. Appendix A
contains a complete list of these messages along with their numeric codes.

4-7

UM 560130001
1 January 1987

4.3.1 CREATE OPERATIONS

These operations allow the creation of entities in the working model. The
application creates the entity in its local memory space. This includes the
specification of KIND, LENGTH, and any other attribute data as needed. The

;IND value cannot change. The LENGTH value can be changed by the MAEUD
unction.

The create routines are shown in the following tabie.

DESCRIPTION ROUTINE
Create an entity. MAECR
Create an appl‘.a‘io; list of constituent entity references. MAEC
Create ar: application 1ist of inclusive constituent entities. MAECI
Create an application 1ist of inclusive constituents by KIND. MAECIK
Create an application list of user entity references. MAEU
Create an application 1ist of inclusive user entities. MAEUI
Create an application 1ist of inclusive users by KIND. MAEUIK

UM 560130001
1 January 1987

MAECR
FUNCTION: Create an entity.
FORMAT: MAECR(ENTDEF,KEY1,KEY2, IRC)
INPUT:

ENTDEF : ENTBLOCK
The application data structure which contains
the entity definition.

KEYl1 : ANYKEY
The entity or 1list of entities to be made
constituents of the entity being created.

OUTPUT:
KEY2 : ENTKEY
. The key of the newly created entity.
IRC : INTEGER

The return code.

DESCRIPTION: The entity is added to the model. Constituent entities are
connected to the entity. If KEYl is an entity key then only that
entity will become a constituent. If KEYl is a list key then all
entities in the 1ist will become constituents.

A nil key may be used if the entity being created is to have no
constituents(a full word integer zero can be used as a nil key).

NOTE: The application is responsible for the format of the AL:
data after the first three items (KIND, SIZE, SYSUSE).

EXAMPLE: See Sample Programs Section.

ERRORS: Message Description
BAD_LIST_POSITION Incorrectly built model.
BAD_ENT_KIND Kind of given key undefined.
NOT_ENOUGH_ROOM No more core memory.

4-9

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MAEC

Create an application 1ist of constituent entities.

MAEC(KEY1,KEY2, IRC)
INPUT: .
KEYI : ANYKEY

The entity or list of entities for which a list
of direct constituents is wanted.

QUTPUT:
KEY2 : LISTKEY
The returned key of the application list of
direct constituents.

IRC ¢ INTEGER
The return code.

KEY2 is created. If KEYl is an entity key then the constituent
1ist of KEYl will be copied into KEY2. If KEYl is a list key
tgen the constituent lists of each entity will be copied into
KEY2.

Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_ENT_KEY . Nil key.

NOT_ENOUGH_ROOM No more core memory.

4-10

FUNCTION:
FORMAT:

DESCRIPTION:

EXAMPLE:
NOTE:

ERRORS:

WARNING:

UM 56013000:
1 January 1987

MAECIL

Create an application 1ist of inclusive corstituent entities.

MAECI(KEY1,KEY2, IRC)
INPUT:
KEY1 : ANYKEY

The entity or list of entities whose inclusive
constituents are wanted.

OUTPUT:
KEY2 : LISTKEY
The returned key of the inclusive application
1ist of constituents.

IRC : INTEGER
The return code.

KEY2 is created. If KEYl is an entity key, then the inclusive
constituent 1ist of KEY]l will be copied into KEY2. 1If KEYI is a
1ist key, then the inclusive constituent 1lists of each entity
will be copied into KEY2. KEY1 is not included in KEY2.

No dupiicate keys will exist. Entities are marked as "processed"
when placed in the output 1list. If a processed entity is
encountered again on another constituent 1list, it will not be
repeated on the output list.

See Sample Programs Section.

See the System Overview Section for further explanation of
inclusive constituents.

Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_ENT_KEY Ni1 key.

NO_MORE_ROOM No more core memory.

NO_LIST_CREATED

4-11

FUNCTION:

FORMAT:

DESCRIPTION:

NOTE:

ERRORS:

WARNING:

UM 560130001
1 January 1987

MAECIK

Create an application list of inclusive constituents of a
specified KIND.

MAECIK(KEY1,KIND,KEY2,IRC)

INPUT:
KEYl : ANYKEY
The entity or Tist of entities whose inclusive
constituents are to be searched for by specified
KIND.
KIND : INTEGER
The KIND code of an entity or an entity class.
OUTPUT:
KEY2 : LISTKEY

The key of a list which will contain all
entities of the specified KIND found within the
inclusive constituents of KEY1.

IRC : INTEGER
The return code.

KEY2 is created. If KEYl is an entity key then the inclusive
constituents of the specified KIND will be copied into KEY2. If
KEY] is a T1ist key then the inclusive constituents of all
egtities on the list of the specified KIND will be copied into
KEY2.

No duplicate keys will exist.

See Entity in the System Overview for further explanation of
inclusive constituents.

Message Descriptijon

BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_ENT_KEY Nil key.

NO_MORE_ROOM No more core memory.

NO_LIST_CREATED

4-12

UM 560130001
1 January 1987

MAEU
FUNCTION: Create an application 1ist of user entity references.
FORMAT: MAEU(KEY1,KEY2, IRC)
INPUT:
KEY1 : ANYKEY

The entity or list of entities for which a list
of direct users is wanted.

OUTPUT:
KEY2 : LISTKEY
Returned key of the application list of direct
users.
IRC ¢ INTEGER

The return code.

DESCRIPTION: KEY2 is created. If KEYl is an entity key then the user list of
KEY1 will be copied into KEY2. If KEYl is a list key then the
user 1ists of each entity will be copied into KEY2.

EXAMPLE: See Sample Program Section.

ERRORS : Message Description
BAD_ENT_KEY Nil key.
NO_MORE_ROOM No more core memory.

WARNING: NO_LIST_CREATED

FUNCTION:
FORMAT:

DESCRIPTION:

NOTE:

ERRORS:

WARNING:

UM 560130001
1 January 1987

MAEUI

Create an application list of inclusive user entities.

MAEUI(KEY1,KEY2, IRC)
INPUT:
KEY1 ANYKEY

The entity or list of entities whose inclusive
users are wanted.

OUTPUT:
KEY2 LISTKEY
The returned key of the inclusive application
list of users.
IRC INTEGER

The return code.

KEY2 is created.

If KEYl is an entity key, then the inclusive

user list of KEYl will be copied into KEY2.

If KEY]l is a list

key, then the inclusive user lists of each entity will be copied
into KEY2. KEY1l is not included in KEY2.

No duplicate keys will exist.

See the System Overview Section for further explanation of

inclusive users.

Message
BAD_LIST_REFERENCE
BAD_ENT_KEY
NO_MORE_ROOM

NO_LIST_CREATED

Description

Given key not an entity or a list.
Nil key.
No more core memory.

4-14

FUNCTION:
FORMAT:

DESCRIPTION:

NOTE:

ERRORS:

WARNING:

UM 560130001
1 January 1987

MAEVIK

Create an application 1ist of inclusive users by KIND.

MAEUIK{XEY1,KIND,

INPUT:
KEY1

KIND

OUTPUT:

KEY2

IRC

KEY2 is created.

KEY2, IRC)

ANYKEY
The entity or list of entities whose inclusive
users are to be searched for by specified KIND.

INTEGER
The KIND code of an entity or an entity class.

LISTKEY

The key of a list which will contain all
entities of the given KIND found within the
inclusive users of KEYI.

INTEGER
The return code.

If KEYl] is an entity key, then the inclusive

users of the specified KIND will be copied into KEY2. If KEY1 is

a list key, then
of the specified

the inclusive users of all entities on the list
KIND will be copied into KEY2.

See the System Overview Section for further explanation of

inclusive users.

Message Qescription

BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_ENT_KEY Nil key.

NO_MORE_ROOM No more core memory.

NO_LIST_CREATED

4-15

4.3.2 GET OPERATIONS

UM 560130001
1 January 1987

These operations are used to get the MAS copy of a specified entity attribute

block and load it into the application memory area.

used to get a specified attribute in the entity ADB.

The get routines are shown in the table below.

Get operations are also

DESCRIPTION ROUTINE
Get the KIND value of a specific entity. MAEGKN
Get the ADB of a specific entity. MAEGTK

4-16

UM 560130001
1 January 1987

MAEGKN
FUNCTION: Get the KIND value of a specific entity.
FORMAT: MAEGKN(KEY1,KIND, IRC)
INPUT:
KEYl : ENTKEY
The entity whose kind is to be gotten.
OUTPUT:
KIND : INTEGER
The KIND value of the specified entity.
IRC : INTEGER

The return code.

DESCRIPTION: The stored ADB is located. The KIND value in the ADB is moved tc
the application ADB. i

ERRORS: Message Description
BAD_ENT_KEY Nil key or not an entity.
NO_MORE_ROOM No more core memory.

4-17

UM 560130001
1 January 1987

MAEGTK
FUNCTION: Get the ADB of a specific entity.
FORMAT: MAEGTK(KEY1,ENTDEF, IRC)
INPUT:
KEY1 : ENTKEY

The key of the entity to be gotten.

OUTPUT:
ENTDEF : ENTBLOCK
The ADB to receive the stored entity.

IRC : INTEGER
The return code.

DESCRIPTION: The stored ADB is located and moved to the application ADB. If
KEY1 is a nil key, then a nil KIND and a zero LENGTH is returned.

EXAMPLE: See Sample Program Section.

ERIORS Message Description
BAD_ENT_KEY Nil key or not an entity.
NO_MORE_ROOM No more core memory.

4-18

UM 560130001
1 January 1987

4.3.3 UPDATE OPERATIQNS

These operations are used to update the ADB for specified entities. In
general, the application should use the MAEGTK function to get the ADB before
the update function is used.

The update routine is shown in the following table.

DESCRIPTION ROUTINE

Update the attribute data block of an entity. MAEUD

4-19

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MAEUD

Update the attribute data block of an entity.
MAEUD(KEY1,ENTDEF, IRC)

INPUT:
KEYl : ENTKEY
The entity to be updated. This must be an
entity key.
ENTDEF : ADB
The ADB supplying the update values.
OUTPUT:
IRC : INTEGER

The return code.

The ADB of KEYl will be updated. The value of KIND must agree
with the Model Access Software copy of this entity. Otherwise,
an error will result. If the LENGTH 1is greater than the current
LENGTH, then a new ADB will be created with more space.

Message Description

BAD_ENT_KIND Kind or given key is undefined.
BAD_ENT_KEY Given key is nil.
CANT_UPDATE_ENTITY

NO_MORE_ROGCM No more core memory.

4-20

UM 560130001
1 January 1987

4.3.4 DELETE OPERATIONS

These operations address how you delete entities from the MAS working form
model. The entities in the working model currently are grouped into the
following classifications:

o Dependent
0 Support
o Primary
o Secondary

Delete rules have been established for the entities in these classifications.
For a new entity kind, the default classification is "Dependent"” unless it is
otherwise defined.

DELETE RULES

The delete rules apply to the constituent relationships with which entities are
defined. They determine whether a constituent entity can be deleted by
checking each of its user entities. For example, the delete rules applied to
entity (A) in relation to a specific user entity (B) may be different than the
delete gggles for that same entity (A) in relation to another specific user
entity .

The action taken for the IDB/MAS delete classifications are determined by the
combinations of yes/no (Y/N) answers to the following conditions, posed as
questions:

(1) Can this constituent entity be deleted from a specific user entity?

(2) Does the deletion of this (constituent) entity cause deletion of a
specific user? .

(3) Does deletion of a specific user cause deletion of this entity

(constituent)?
CONDITION
(1) | (2) | (3) DELETE CLASSIFICATION
N N N Dependent
N N Y Support
N Y N Primary
Y N N Secondary

§-21

UM 560130001
1 January 1987

The delete classifications are defined as follows:

Constituent entity cannot be deleted because the user entity
is dependent on its existence. The user entity may be deleted
without deleting the constituent entity.

Dependent

Support Constituent entity cannot be deleted because the user entity
is dependent on its existence. The user entity may be
deleted; however, the constituent entity will also be deleted
unless another user entity does not permit the deletion of the

constituent entity.

Primary

Constituent entity can be deleted. but only if the user
entity can, and will, also be deleted. The user entity may be
deleted without the constituent entity being deleted.

If the number of constituents falls below an established
minimum, the constituent entity can be deleted and, if
possible, the user entity will also be deleted. If the user
entity cannot be deleted, none of the minimum constituents can
be deleted. If the number of constituents is greater than or
equal to the minimum, the constituent entity can be deleted.

Secondary

Test routines are provided to return the entities or 1lists that would be
deleted if actual delete routines were used.

§-22

UM 560130001
1 January 1987

DELETE ROUTINES

The IDB/MAS delete routines are presented in the following table. The first
two routines actually delete entities (MAED, MAEDI). The third and fourth
routines test the delete function, allowing the programmer to see the results
of a potential delete without modifying the stored data (MAEDT, MAEDTI).

When deleting a 1ist of entities that includes users and constituents, the list
should be ordered so that the users are processed before the constituents. The
routines MALROR and MALRORI perform this function on an application list. (An
entity constituent 1ist should never be reordered.)

DESCRIPTION ROUTINE
Delete an entity or list of entities. MAED
Delete an entity or list of entities and the inclusive MAEDI
constituents.
Delete test an entity or list of entities. MAEDT
Delete test an entity or list of entities and thé inclusive MAEDTI
constituents.

UM 560130001
1 January 1987

MAED
FUNCTION: Delete an entity or list of entities.
FORMAT: MAED(KEY1,KEY2, IRC)
INPUT:
KEY] : ANYKEY
The entity or list of entities to be deleted.
OUTPUT:
KEY2 : LISTKEY
The list of entities marked for deletion.
IRC ¢ INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key, and the order of
the entities in the list may be important. KEY2 will list any
entities from the KEYl 1ist that were not deleted. If all
entities are deleted, the mark list will be empty.

ERRORS : Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
RULE_DOES_NOT_MATCH Rules defined incorrectly.
NO_MORE_ROOM No more core memory.

WARNINGS: EMPTY_MARK_LIST No entities marked for delete.

4-24

UM 560130001
1 January 1987

MAEDI
FUNCTION: Delete an entity or 1ist of entities and their inclusive
constituents.
FORMAT: MAEDI(KEY1,KEY2, IRC)
INPUT:
KEYl : ANYKEY
The entity or 1ist of entities to be deleted.
OUTPUT:
KEY2 : LISTKEY
The 1ist of entities marked for delete.
IRC ¢ INTEGER

The return code.

DESCRIPTION: KEYl may be either an entity key or a list key, and the order of
the entities in the list may be important. KEY2 will list any
entities from the KEYl 1list that were not deleted. If all
entities are deleted, the mark 1ist will be empty.

ERRORS: Message Description
BAD_LIST_REFERENCE Given key not .an entity or a list.
RULE_DOES_NOT_MATCH Rules defined incorrectly.
NO_MORE_ROOM No more core memory.

WARNINGS: EMPTY_MARK_LIST No entities marked for delete.

4-25

UM 560130001
1 January 1987

MAEDT
FUNCTION: Delete test an entity or 1ist of entities.
FORMAT: MAEDT(KEY1,KEY2,KEY3, IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be tested.
OUTPUT:
KEY2 : LISTKEY

The 1ist containing entities that would be
deleted by MAED.

KEY3 : LISTKEY

The 1ist containing entities that would be
marked by MAED.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDT delete routine simulates the output of the MAED routine
without actually deleting the entities or marking them inactive.

ERRORS: Message Description
BAD_DELETE_KEY Given key not an entity or a list.
RULE_DOES_NOT_MATCH Rules defined incorrectly.
NO_MORE_ROOM No more core memory.

WARNINGS: EMPTY_DELETE_LIST Given delete 1ist was empty.
EMPTY_MARK_LIST No entities marked for delete.

4-26

UM 560130001
1 January 1987

MAEDTI
FUNCTION: Delete test an entity or list of entities and their inclusive
constituents.
FORMAT: MAEDTI(KEY1,KEY2,KEY3, IRC)
INPUT:
KEY1 : ANYKEY
The entity or 1ist of entities to be tested.
OUTPUT:
KEY2 : LISTKEY

The 1list containing entities that would be
deleted by MAEDI.

KEY3 : LISTKEY
The list containing entities that would be
marked by MAEDI.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDTI delete routine simulates the output of the MAED!
routine without actually deleting the entities or rendering them

jnactive.

ERRORS: Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_DELETE_KEY Given key is nil.
RULE_DOES_NOT_MATCH Rules defined incorrectly.
NO_MORE_ROOM No more core memory.

WARNINGS: EMPTY_DELETE_LIST Given delete 1ist was empty.
EMPTY_MARK_LIST No entities marked for delete.

§-27

UM 560130001
1 January 1987

MAEDTS
FUNCTION: Delete test an entity or 1ist of entitfes and return three lists.
FORMAT: MAEDTS(KEY1,KEY2,KEY3,KEY4, IRC)
INPUT:
KEY1 : ANYKEY
The entity or 1ist of entities to be tested.
QUTPUT:
KEY2 : LISTKEY
The list of entities that would be deleted by
MAED.
KEY3 : LISTKEY

The 1list of entities that would not be
deleted by MAED.

KEY4 : LISTKEY
The 1ist of entities that would be marked for
delete by MAED.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDTS routine is similar to MAEDT except that three lists
are returned. KEY2 and KEY4 can be submitted to directly delete
and mark entities without checking the delete rules.

ERRORS: Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_DELETE_KEY Given key is nil.
RULE_DOES_NOT_MATCH Rules defined incorrectly.
NO_MORE_ROOM No more core memory.

WARNINGS: EMPTY_DELETE_LIST Given delete 1ist was empty.
EMPTY_MARK_LIST No entities marked for delete.

4-28

UM 560130001
1 January 1987

4.3.5 ACTIVATE QPERATIONS

These operations are used to activate an entity. An entity is deactivated when
a delete was attempted, but was not completed because of the user’s dependency
condition on the entity. (See Delete Operations Section)

The activate routines are shown in the table below.

DESCRIPTION ROUTINE
Activate an entity or list of entities. MAEA
Activate an entity or 1ist of entities and their inclusive MAEAI

constituents.

Find the present value of the activation setting for an entity.| MAEAV

0 Activation is not the same as rejection after a delete. If an entity
was deleted, then it cannot be recovered with these functions.

0 Activation functions will activate any entity regardless of when or
how it was made inactive.

4-29

UM 560130001
1 January 1987

MAEA
FUNCTION: Activate an entity or list of entities.
FORMAT: MAEA (KEY1,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be activated.
OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEYl may be either an entity key or a list key. If KEYl is an
entity key then only that entity will be activated. If KEY1 is a
1ist key then all entities in the 1ist will be activated.

ERRORS: Message Explanation
BAD_LIST_REFERENCE , Given key not an entity or a list.
BAD_ENT_KEY Nil key.
NOT_ENOUGH_ROOM No more core memory.

4-30

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MAEAL

Activate an entity or list of entities and their inclusive
constituents.

MAEAI(KEY1, IRC)
INPUT:
KEYl : ANYKEY
The entity or list of entities to be activated.
OUTPUT:
IRC : INTEGER

The return code.

KEY1 may be either an entity key or a list key. If KEYl is an
entity key then only that entity and its inclusive constituents
will be activated. If KEYl is a list key then all entities in
the list and their inclusive constituents will be activated.

See the System Overview Section for further explanation of
inclusive constituents. -

Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
NOT_ENCUGH_ROCM No more core memory.

4-31

UM 560130001
1 January 1987

MAEAV
FUNCTION: Find the present value of the activation setting for an entity.
FORMAT: MAEAV(KEY1, [IAVAL, IRC)
INPUT:
KEY]1 : ENTKEY
The entity to be examined.
OUTPUT:
IAVAL : INTEGER

The activation code.
=0 if set for delete
=1 {f not set for delete

IRC + INTEGER
The return code.

DESCRIPTION: Returns the current value of the activation setting for the
specified entity. .

ERRORS : Message Description

BAD_ENT_KEY Given kéy not an entity.
NOT_ENOUGH_ROOM No more core memory.

4-32

4.3.6 APPLICATION FLAG OPERATIONS

UM 560130001
1 January 1987

These operations are used to get or set any application accessible flag

associated with an entity.

The Application Flag routines are shown in the following table.

DESCRIPTION ROUTINE
Reset any application accessible flag for all entities in MAERST
the model.
Determine the value of a given application accessible flag MAQURY
of an entity.
Update the value of a given application accessible flag of MAUPDT
an entity or list of entities.
Determine whether the user compresses with its constituent. MAECQY
Create a list of constituents with which the input entity MAECMP
compresses.
Reset Process Flag for all entities in the model. MAESWA
Set the Process Flag in an entity or list of entfities. MAESWT
Find the Process Flag setting of an entity. MAESVL

4-33

UM 560130001
1 January 1987

MAERST
FUNCTION: Re;e% given application accessible flag in all entities in the
model.
FORMAT: ~ MAERST(FLAGNAME, IRC)
INPUT:

FLAGNAME : NAMTYP
The name of the flag to be reset in all entities
in the model. Can have the following values:

1) ‘MROFLG’ activation flag

2) ‘PRCFLG’ process flag

3) ‘ABSFLG’ absent/present flag
4) ‘APLFLG’ application flag

=0 off
=] on
OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: Determine what flag is to be reset in every entity in the model.
Resets that flag to ‘off’.

ERRORS: Message Description
INVALID_FLAG_NAME Given flag name undefined.
SCHEMA_ROOT_NIL No model active.
NO_MORE_ROOM No more core memory.

4-34

UM 560130001
1 January 1987

MAQURY
FUNCTION: Determine the value of a given application accessible flag for
the entity.
FORMAT: MAQURY (KEY1, FLAGNAME, FLGVAL , IRC)
INPUT:
KEY1 : ENTKEY
The entity whose specified flag value is to be

gotten.

FLAGNAME : NAMTYP
The name of the flag to be gotten. Can have the
following values:

OUTPUT:

‘MROFLG’ activation flag
‘PRCFLG’ process flag
‘ABSFLG’ absent/present flag
‘APLFLG’ application flag

=0 off

=] on

FLGVAL : INTEGER
The value of the specified flag.
0 = false 4
1 = true

IRC : INTEGER
The return code.

DESCRIPTION: Determine what flag’s value is to be gotten. Get that flag's

value.

ERRORS: Message
BAD_LIST_REFERENCE

INVALID_FLAG_NAME
NO_MORE_ROOM

Description

Given reference nil or not an
entity.

Given flag name undefined.

No more core memory.

4-38

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MAUPDT

Update the value of a given application accessible flag for an
entity or list of entities.

MAUPDT(KEY1, FLGNAME, FLGVAL, IRC)

INPUT:
KEY1

FLAGNAME :

FLGVAL

IRC

Determine what f1
value.

Message

BAD_LIST_REFERENC
INVALID_FLAG_NAME
NO_MORE_ROOM

ANYKEY

The entity or list of entities whose specified
flag value will be updated.

NAMTYP

The name of the flag to be updated. Can have
the following values:

1) ‘MRDFLG’ activation flag
2) ‘PRCFLG’ process flag
3) ‘ABSFLG’ absent/present flag
4) ‘APLFLG’ applicatior flag
=0 off
=] on

INTEGER

The value of the specified flag to be used when
updating. '

0 = false

1 = true

INTEGER
The reutrn code.

ag’s value is to be updated. Update that flag’s

Description

E Given key not an entity or a list.
Given flag name undefined.
No more core memory.

4-36

UM 560130001
1 January 1987

MAECOY
FUNCTION: Determine whether the user compresses with its constituent.
FORMAT: MAECQY(KEY1, KEY2, CMPFLG, IRC)
INPUT:
KEY1 ENTKEY
Key of the entity thats constituent is to be
checked.
KEY2 ENTKEY
Key of the constituent thats rule is to be
checked.
OUTPUT:
CMPFLG INTEGER
Value of the user’s compress rule in relation to
its constituent.
1 = true
0 = false
IRC INTEGER
Return code

0 = Good return
<0 Critical error
>0 Warning

DESCRIPTION: Query constituent compress rule to its user.

4-37

UM 560130001
1 January 1987

MAECMP
FUNCTION: Create a list of constituents with which the input entity
compresses.
FORMAT: MAECMP(KEY1, KEY2, IRC)
INPUT: ,
KEY1 ENTKEY
Key of the entity thats compressibility is
determined by the constituents(s).
OUTPUT:
KEY2 LISTKEY
List of the constiutents that cause the
compression of the input entity.
IRC INTEGER

Return code

0 = Good return

<0 Critical error
>0 Warning

DESCRIPTION: Each constituent thats delete rule states that the input entity
will also be compressed will be added to the output list.

4-38

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MAESWA

Reset Process Flag for all entities in the model.
MAESWA(IRC)

INPUT:
NONE

OUTPUT:
IRC : INTEGER
The return code.

The Process Flag is set to OFF in all entities in the
working-form model.

Message Description
NO_MORE_ROOM No more core memory.

4-39

UM 560130001
1 January 1987

MAESWT
FUNCTION: Set the Process Flag in an entity or a list of entities.
FORMAT: MAESWT(KEY1, ISWT, IRC)
INPUT:
KEY1 : ANYKEY

The entity or list of entities whose process
flag is to be set.

ISWT : INTEGER
The input value of the process flag.

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: The process flag will be set to the value specified by ISWT. If
KEYl is an entity key, then the flag in that entity will be set.
If KEY] is a 1ist key, then the flag in all entities referenced
by the 1ist will be set. ISWT should be "1" for flag setting of
true and "0" for flag setting of false.

ERRORS: Message Descriotion
BAD_LIST_REFERENCE Given key not an entity or a Tist.
NO_MORE_POOM No more core memory.

4-40

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MAESVL

Find the Process Flag setting of an entity.

MAESVL(KEY1, ISET, IRC)
INPUT:
KEYl : KEY

The entity for which the flag setting is
wanted. This must be an entity key.

OUTPUT:
ISET : INTEGER
The output value of the process flag.
IRC : INTEGER

The return code.

The value of the process flag for KEYl will be returned. If the
flag is true, then the value "1" will be returned. If the flag
is false, then the valye "0" will be returned.

Message Qescription
BAD_ENT_KEY Given key is nil or not an entity.
NO_MORE_ROOM : No more core memory.

4-41

UM 560130001
1 January 1987

4.4 LIST OPERATIONS

This section explains the use of the MAS 1ist operations. A 1list is a
temporary internal structure that contains references to entities. Since the
application can build 1ists that take up space in the working model, it is
necessary that the applications periodically delete the 1lists that are no
longer needed. :

Many list operations will accept either a 1ist key or an entity key as input
keys. When an entity key is suppiied, it is assumed that the constituent list
of the entity becomes the 1ist to be operated on.

Some operations on lists may result in the same entity being in the output list
more than once. The operation (MALRDE) can be used to remove duplicate
entities from the list.

A1l operations that create an application list automatically set the position
of the list to the beginning. Once a 1ist has been read to the end, it must be
reset before the sequential read process can begin again.

When an entity is deleted, all references to it in all application lists are
automatically removed and the current positions of the affected lists are
adjusted to retain their original meaning.

The basic list operations can be categorized by the following functions:

Boolean
Structure
General

Delete

Edit

Sequential Read
Execute

Included with the 1ist operations descriptions are the error and warning

messages that may be returned. Appendix A contains a complete list of these
messages along with their numeric codes.

4-42

UM 560130001
1 January 1987

4.4.1 BOOLEAN OPERATIONS

For Boolean operations, there are two input lists and one output list. The
application is responsible for providing two input lists consisting with the
Boolean operation to be performed. No validation checking is done. If one or
both of the input lists contain duplicate entities, then the output Vist may
also contain duplicate entities. This result may not be consistent with the
Boolean theory operation being performed.

The Boolean routines are shown in the following table.

DESCRIPTION ROUTINE
Create a list from a Boolean "AND" on two input lists. MALAﬁD
Create a 1ist from a Boolean "NOT" on two input lists. MALNOT
Create a 1ist from a Boolean "OR" oﬁ two input lists. MALOR

4-43

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

WARNINGS:

UM 560130001
1 January 1987

MALAND

Create a 1ist from a Boolean “AND" on two input lists.
MALAND(KEY1,KEY2,KEY3, IRC)

INPUT:
KEY1 : ANYKEY
An entity or a 1ist that is to be AND’ed.

KEY2 : ANYKEY
An entity or a list that is to be AND’ed.

QUTPUT:
KEY3 : LISTKEY
Thezlist of entities that occurred in both KEYl and
KEY2.

IRC : INTEGER
The return code.

KEY! may be either an entity key or a list key. If KEYl is an
entity key, then the constituent list of KEYl is AND'ed with
KEY2. If KEYl is a list key, then KEYl is AND’ed with KEY2.
KEY2 may be either an entity key or a list key. If KEY2 is an
entity key then the constituent 1ist of KEYZ is AND’ed with

KEY1l. If KEY2 is a list key then KEY2 is AND’ed with KEY2. The

Tist KEY3 1is created, corresponding to the set theoretical
intersection of KEYl and KEY2. :

Message Description
BAD_LIST_REFERENCE Given key(s) nil or not a list.
NO_MORE_ROOM No more core memory.

NO_LIST_CREATED

4-44

UM 560130001
1 January 1987

MALNOT
FUNCTION: Create a 1ist from a Boolean "NOT" on two input lists.
FORMAT: MALNOT(KEY1,KEY2,KEY3, IRC)

INPUT:
KEY1l : ANYKEY
An entity or a 1ist that is to be NOT'ed.

KEY2 : ANYKEY
An entity or a 1ist that is to be NOT'ed.

OUTPUT:
KEY3 : LISTKEY
The 1ist of entities that occurred in KEYl but not
in KEY2.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEYl is an
entity key, then the constituent 1ist of KEYl is NOT’ed with
KEY2. If KEYl is a list key, then KEYl {is NOT’ed with KEY2.
KEY2 may be either an entity key or a list key. If KEY2 is an
entity key, then the constituent 1list of KEY2 is NOT’ed with
KEY1. 1If KEY2 is a 1ist key, then KEY2 is NOT’ed with KEYl. The
1ist KEY3 i{is created, corresponding to the set theoretical
difference of KEYl and KEY2.

ERRORS: Message Description
BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_ENT_KEY Given key nil.

NO_MORE_ROOM No more core memory.
WARNINGS: NO_LIST_CREATED '

4-45

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS

WARNINGS:

UM 560130001
1 January 1987

MALOR

Create a 1ist from a Boolean "OR" on two input lists.
MALOR(KEY1,KEY2,KEY3, IRC)

INPUT:
KEY1 : ANYKEY
An entity or a 1ist that is to be OR’ed.

KEY2 : ANYKEY
An entity or a 1ist that is to be OR’ed.

OUTPUT:
KEY3 : LISTKEY
Izgzlist of entities that occurred in either KEY] or

IRC : INTEGER
The return code.

KEY!] may be either an entity key or a list key. If KEYl is an
entity key, then the constituent list of KEYl is OR’ed with
KEY2. If KEYl is a list key, then KEYl is OR’ed with KEY2. KEY2
may be either an entity key or a list key. If KEYZ is an entity
key, then the constituent list of KEY2 is OR‘ed with KEYl. If
KEY2 is a list key, then KEY2 is OR’ed with KEYl. The list KEY3
is created, corresponding to the set theoretical union of KEYI
and KEY2. If there is an entity in KEYl that is also in KEYZ,
there will be duplicates in KEY3.

Message - Qescription

BAD_LIST_REFERENCE Given key not an entity or a list.
BAD_ENT_KEY Given key(s) nil.

NO_MORE_ROOM No more core memory.

NO_LIST_CREATED

4-46

UM 560130001
1 January 1987

4.4.2 STRUCTURE OPERATIONS

The following table presents the structure routines:

DESCRIPTION ROUTINE
Create a list of entities with a given KIND. MALK
Create a list of entities with a given KIND that are found MALKL
within another tist.

4-47

UM 560130001
1 January 1987

MALK
FUNCTION: Create a 1ist of entities with a given KIND.
FORMAT: MALK(KIND,KEY1, IRC)
INPUT:

KIND : INTEGER
A valid KIND code that may be either the KIND of an
entity or class of entities.

OUTPUT:
KEY1l : LISTKEY
The 1ist of all entities of the specified KIND.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1l {s created. KEYl will contain all entities of KIND. If a
data dictionary is specified, then the KIND may be a class of
enities. In this case, the elements of the list will be a
(Togical) concatenation of the content of each entity class as
they are encountered from left to right in the entity class

structure.

ERRORS: Message Description
CANT_CREATE_LIST Given kind undefined.
BAD_SCHEMA_KIND Given not of an instance or class.
BAD_LIST_POSITION Schema root inconsistent.
NO_MORE_ROOM No more core memory.

WARNINGS: NO_SUCH_SCHEMA Kind undefined.

NO_LIST_CREATED

4-48

UM 560130001
1 January 1987

MALKL
FUNCTION: Create a list of entities with a given KIND that are found within
another 1ist.
FORMAT: MALKL(KEY1,KIND,KEY2, IRC)
INPUT:

KEY1 : ANYKEY
The entity or list of entities whose list is to be
searched for the specified KIND.

KIND : INTEGER
The KIND code of an entity or an entity class.

QUTPUT:
KEY2 : LISTKEY
The list that will ccntain all entities of the given
KIND found within the 1ist specified by KEY1.

IRC : INTEGER
The return code.

DESCRIPTION: If KEYl 1is an entity key, put all constituents of entity KEYl
into KEY2 that match on kind. [If KEYl is a 1ist key, put all
entities in the KEYl 1ist into KEY2 that match on kind.

ERRORS: Message Description
BAD_ENT_KIND No such kind.
BAD_LIST_REFERENCE Given key nil or not an entity or
not a list.
BAD_LIST_POSITION Schema root inconsistent.
NO_MORE_ROOM No more core memory.
WARNINGS: NO_LIST_CREATED

4-49

UM 560130001
1 January 1987

4.4.3 GENERAL QPERATIONS

The following table presents the general routines:

DESCRIPTION ROUTINE
Creates an empty list. MAL
Create an empty list of specified size. MALN
Makes a copy of a list. MALCPY
Find the position of an entity in a 1ist. MALFND
Count the entities in a list. MALNO
Get the Nth key from a list. | MALGTK

4-50

FUNCTION:
FORMAT:

DESCRIPTION:
EXAMPLE:
ERRORS:

UM 560130001
1 January 1987

Creates an empty list.
MAL(KEY1,IRC)

INPUT:
None

OUTPUT:
KEY1 : LISTKEY
The key of the empty list.

IRC : INTEGER
The return code.

An empty list is created.

See Sample Programs Section.

Message Description
CANT_CREATE_LIST Memory allocation problems.
NO_MORE_ROOM No more core memory.

4-51

UM 560130001
1 January 1987

MALN
FUNCTION: Create an empty 1ist of specified size.
FORMAT: MALN(LSIZE,KEY1,IRC)
INPUT:

LSIZE: INTEGER
The number of entries in the list.

OUTPUT:
KEYl : LISTKEY
The key of the empty list of specified size.

IRC : INTEGER
The return code.

DESCRIPTION: An empty application 1ist will be created with sufficient space
to accommodate LSIZE entries. All entries are initialized to

nil.

ERRORS: Message Description
CANT_CREATE_LIST Memory allocation problems.
MAXIMUM_LIST_SIZE Requested size too large.
NO_MORE_ROOM No more core memory.

4-52

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

MALCPY

Makes a copy of a list.
MALCPY(KEY1,KEYZ2, IRC)

INPUT:
KEY1l : LISTKEY

UM 560130001
1 January 1987

A 1ist key whose entries will be copied.

OUTPUT:
KEY2 : LISTKEY

The new 1ist that will receive a copy of KEYl.

IRC : INTEGER
The return code.

KEY2 will be created. The elements of KEYl will be copied into

KEY2.

Message

BAD_LIST_REFERENCE
NO_MORE_ROOM

4-53°

Description

Given key nil or not a list.

No more core memory.

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALFND

Find the position of an entity in a list. If KEYl is an entity
then find its position in the constituent 1ist of that entity.

MALFND(KEY1,KEY2, IFIRST, IPOS, IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities in which KEY2 is to be
found.

KEY2 : ENTKEY
The entity to be founa in KEY1.

IFIRST : INTEGER
The position in KEYl where the find operation is to
start.

OUTPUT:
IPOS : INTEGER
The position in KEYl where KEY2 is found.

IRC : INTEGER
The return code.

KEY! may be either an entity key or a list key. If KEYl is a
1ist then KEY2 is found in the list. If KEYl is an entity, then
KEY2 is found in the constituent list of KEYl. KEY2 must be an
entity key. The find starts at position IFIRST. Each entity in
KEY] 1is examined for equality with KEY2 starting with the
specified position. [If a match is found, then the position is
returned in IPOS. If there is no match, then IPOS is returned as
zero and IRC signals an error. If there are multiple matches,
then only the first (leftmost) match is retured in IPOS.

Message Description

NO_MATCH_FOUND Entity not on list.

BAD_LIST_REFERENCE ?iven key(s) not an entity or a
ist.

BAD_ENT_KEY Given key(s) is nil.

NO_MORE_ROOM No more core memory.

4-54

FUNCTION:
FORMAT:

DESCRIPTION:

EXAMPLE:
ERRORS:

UM 560130001
1 January 1987

MALNO

Count the entities in a list.

MALNO(KEY1,KQUNT, IRC)
INPUT:
KEY1 : ENTKEY

The entity or l1ist of entities to be counted

QUTPUT:
KOUNT: INTEGER
The number of entities in the list.

IRC : INTEGER
The return code.

KEY1 may be either an entity key or a list key. If KEYl is an
entity the number of constituents is returned. If KEYl is a list
the number of entiti2s on the 1ist is returned.

See Sample Programs Section.

Message Description

BAD_LIST_REFERENCE Given key(s) 1is nil or is not an
entity or a list.

NO_MORE_ROOM No more core memory.

4-55

UM 560130001
1 January 1987

MALGTK
FUNCTION: Get the Nth Key from a list.
FORMAT: MALGTK(KEY1, IPOS,KEY2, IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities to be processed.

IPOS : INTEGER
The position in the list of the target entity.

ouTPU":
KEY2 : ENTKEY
The requested key.

IRC : INTEGER
The return code.

DESCRIPTION: 1If KEYl is a 1ist, get the IPOS entry from the list. If KEYl is
an entity, get the IPOS entry from the constituent list of KEYI.

EXAMPLE: See Sample Programs Section
ERRORS: Message Description
BAD_LIST_POSITION Given position beyond the length cf
list.
BAD_LIST_REFERENCE Given key(s) is nil or is not an
entity or a list.
NO_MORE_ROOM No more core memory.

4-56

UM S60130001
1 January 1987

4.4.4 DELETE QPERATIONS

The following table presents the delete routines:

| DESCRIPTION ROUTINE
Delete an application list. | MALD
Delete all application lists. MALDA
Delete an application 1ist and all lists created after it. MALDI .
Set or unset the application 1ist lock flag. . MALOCK

4-57

UM 560130001
1 January 1987

MALD
FUNCTION: Delete an application list.
FORMAT: MALD(KEY1, IRC)
INPUT:

KEY1 : LISTKEY
The 1ist to be deleted.

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: KEY1 must not be an entity key. KEYl is deleted. KEYl cannot be

recovered.

ERRORS: Message Description
BAD_DELETE_KEY Given key not a root, entity, or
NO_MORE_ROOM L;S;Gre core memory.

4-58

FUNCTION:
FORMAT :

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALDA

Delete all application lists.
MALDA(IRC)

INPUT:
None

OUTPUT:
IRC : INTEGER
The return code.

A11 application 1lists will be deleted. They cannot be

recovered. If an application list is locked, then it will not be
deleted.

Message ~ Description -
BAD_LIST_POSITION Error in processing lists.
BAD_LIST_REFERENCE Found nil 1ist pointer.
NO_MORE_ROOM _ No more core memory.

4-59

UM 560130001
1 January 1987

MALDL
FUNCTION: Delete an application 1ist and all 1ists created after it.
FORMAT: MALDI(KEY1, IRC)
INPUT:

KEY1l : LISTKEY
The 1ist to be deleted.

QUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: KEY1 must not be an entity key. The 1ist identified by KEYl and
all lists created after it will be deleted. Deleted lists cannot
be recovered. If an application l1ist is locked, then it will not

be deleted.
ERRORS: Message Description
BAD_LIST_POSITION Error in processing lists.
- BAD_LIST_REFERENCE Given key 1s nil or not in stack of
1ists or is not a list.
BAD_DELETE_LIST Given key is nil.
BAD_ENT_KEY - Found a nil list.
NO_MORE_ROOM No more core memory.

4-60

UM 560130001
1 January 1987

MALOCK
FUNCTION: Set or unset the application 1ist lock flag.
FORMAT: MALOCK(KEY1,L0CK, IRC)
INPUT:

KEY! : LISTKEY
The Tist to be set.

LOCK : INTEGER
The lock setting
=0 unlocked
=] locked

OUTPUT:
IRC : INTEGER
The return code

DESCRIPTION: A 14st that is locked will not be deleted by the interface
functions MALDA or MALDI. A1l other functions that delete lists
will delete a locked list.

ERRORS: Message Description
BAD_LIST_REFERENCE Given key is not a list or is nil.
NO_MORE_ROCM No more core memory.

4-61

4.4.5 EDIT OPERATIONS
The following table presents the edit routines:

UM 560130001
1 January 1987

DESCRIPTION ROUTINE
Attach an entity or 1ist of entities to a list. MALATC
Insert an entity or 1ist of entities into a list. MALINS
Remove duplicate entries in a list. MALRDE
Replace a 1ist. MALREP
Remove an entity from a list. MALRMV
Reorder 1ist of entities in user to constituent qrder. MALROR
Replace an entity in a list. MALRPL
Reverse the order of a list MALRVS
Sorts a 1ist using order provided by a user defined function MALSRT

4-62

FUNCTION:

FORMAT :

DESCRIPTION:

EXAMPLE:
ERRORS:

UM 560130001
1 January 1987

MALATC

Attach an entity or list of entities to a list. If KEYl is an
entity then attach to the constituent 1ist of that entity.

MALATC(KEY1,KEY2, IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities to which KEY2 is to be
attached.

KEY2 : ANYKEY
The entity or list to be attached to KEY1.

OUTPUT:
IRC : INTEGER
The return code.

KEYl may be either an entity key or a list key. If KEYl is a
l1ist, then KEY2 is attached to the list. If KEYl is an entity,
then KEY2 is attached to the constituent 1ist of KEYl. This will
make KEY2 a constituent of KEYl. KEY2 may be either an entity
key or a list key. If KEY2 is a 1list, then the entire list is
attached to KEYl. This is the same as doing multiple attaches of
:2 fntity. If KEY2 1s an entity, then the entity is attached to
Yl.

See Sample Programs Section.

Message Description

INVALID_CONNECTION Given key is nil.

CANT_CONNECT Given key is not an entity or list.
BAD_ENT_KEY Given key(s) is nil.

NO_MORE_ROOM No more core memory.

4-63

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALINS

Insert an entity or list of entities into a list. If KEYl is an
entity, then insert into the constituent 1ist of that entity.

MALINS(KEY1,KEY2,IPOS, IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities in which KEY2 is to be
inserted.

KEY2 : ANYKEY
The entity or 1ist to be inserted in KEY1.

IPOS : INTEGER

The position in KEYl where the insert is to take
place.

QUTPUT:
IRC : INTEGER
.The return code.

KEY]1 may be either an entity key or a 1ist key. If KEYl is a
1ist, then KEY2 is inserted in the list. If KEYl is an entity,
then KEY2 is inserted in the constituent list of KEYl. KEY2 may
be either an entity key or a list key. If KEY2 is a list, then
the entire list is inserted in KEYl. If KEY2 is an entity, then
the entity is inserted in KEYl.

The insert takes place before IPOS. That is, the entity at IPOS
is moved by one position if KEY2 is an entity or by the number of
elements in the list {f KEY2Z is a list. Then the elements are
moved into the vacated positions.

Message Description
BAD_LIST_POSITION Given position less than 1 or

greater than length.
BAD_LIST_REFERENCE Given key is nil.
INVALID_CRB_POSITION Pointer to position of last read at

constituent 1ist is inconsistent.
CRB_POSITION_NOT_FOUND No pointer to read position found.
NO_MORE_ROOM No more core memory.

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALRDE

Remove duplicate entries in a list.
MALRDE(KEY1, IRC)

INPUT:
KEY1 : LISTKEY
The input/output list.

OUTPUT:
IRC : INTEGER
The return code.

Any duplicate entities found in the input list will be removed.
The change is made in-place. The first instance of each entity
will be kept.

Message Description
BAD_LIST_REFERENCE Given key is not a list.
DUPLICATES_NOT_REMOVED

NO_MORE_ROOM No more core memory.

4-65

UM 560130001
1 January 1987

MALREP
FUNCTION: Replace a 1list. If KEYl is an entity then replace the
constituent 1ist of that entity.
FORMAT: MALREP(KEY1,KEY2, IRC)
INPUT:

KEY1 : ANYKEY
The entity or 1ist of entities to be replaced.

KEY2 : ANYKEY
The entity or list to replace KEYl.

OQUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: KEYl may be either an entity key or a 1list key. If KEYl is a
1ist then KEY2 replaces KEYl. If KEYl is an entity then the
constituent 1ist of KEYl is replaced by KEY2. KEY2 may be either
an entity or a 1iit key.

ERRORS: Message Description

BAD_LIST_REFERENCE Given key(s) is nil or not an
entity or a list.

INVALID_CRB_POSITION Pointer to position of last read of
constituent 1ist is inconsistent.

CRB_POSITION_NOT_FOUND No pointer to read position found.

BAD_ENT_KEY Given key(s) is nil.

NO_MORE_ROOM No more core memory.

4-66

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALRMY

Remove an entity from a list. If KEYl is an entity, then remove
it from the constituent 1ist of that entity.

MALRMV(KEY1, IPOS, IRC)

INPUT:
KEY1 : ANYKEY '
The entity or list of entities from which an entity
is to be removed.

IPOS : INTEGER
The position, in the 1list, of the entity to be
removed.

QUTPUT:
IRC : INTEGER
The return code.

KEY] may be either an entity key or a list key. If KEYl is a
1ist then an entity is removed from the list. If KEYl is an
entity then an entity {s removed from the constituent list of
KEYl. IPOS is the position number of the entity to be removed.
The MAS delete rules are used to see if the entity can be removed
from the constituent 1ist.

Message Rescription

BAD_LIST_POSITION Remove position = O or is greater
than length. .

BAD_LIST_REFERENCE ?iven key is not an entity or a

ist.

INVALID_DELETE Delete rule prohibits delete.

INVALID_CRB_POSITION Pointer to position of last read of
constituent 1ist is inconsistent.

CRB_ENTRY_NOT_FOUND Pointer to read position not found.

RULE_DOES_NOT_MATCH Rules incorrectly defined.

NO_MORE_ROOM No more core memory.

4-67

FUNCTION:

~ FORMAT:

DESCRIPTION:

UM 560130001
1 January 1987

MALROR

Reorder a 1ist of entities so that the users appear at the head
of the list.

MALROR(KEYL, IRC)

INPUT:
KEYL : LISTKEY
Key of an application 1ist.

OUTPUT:
RC : INTEGER
Return code
0 = Good return
<0 Critical error
>0 Warning

For each member of the list, search each of the remaining members
for its users; put users at the head of the list.

4-68

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALRPL

Replace an entity in a list. If KEYl is an entity then replace
in the constituent 1ist of that entity.

MALRPL(KEY1,KEY2, IPOS, IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities in which an entity is
to be replaced.

KEY2 : ENTKEY
The entity that will replace an entity in KEYl.

[POS : INTEGER
The position of the entity in KEYl to be replaced.

QUTPUT:
IRC : INTEGER
The return code.

KEY1 may be either an entity key or a 1ist key. If KEYl is a
1ist, then an entity is replaced in the list. [f KEYl is an
entity, then an entity is replaced in the constituent list of
KEY1l. KEY2 must be an entity key. The entity at position IPQS
in KEY1 will be replaced by KEY2. If the entity being replaced
is "MARKED FOR DELETE," then an attempt is made to delete the
entity.

Message Description

BAD_LIST_POSITION Remove position = 0 or is greater
than length.

BAD_LIST_REFERENCE ?}ven key is not an entity or a

st.

INVALID_DELETE Delete rule prohibits delete.

INVALID_CRB_POSITION Pointer to position of last read of
constituent list is inconsistent.

CRB_ENTRY_NOT_FQUND Pointer to read position not found.

RULE_DOES_NOT_MATCH Rules incorrectly defined.

NO_MORE_ROOM No more core memory.

4-69

FUNCTION:
FORMAT:

OESCRIPTION:

ERRORS:

WARNING:

UM 560130001
1 January 1987

MALRYS

Reverse the order of the entities in a list.

MALRVS(KEY1, IRC)
INPUT:
KEY1 : ANYKEY

OUTPUT:
IRC

The entity or list of entities in which the order of
the entities is to be reversed.

: INTEGER

The return code.

KEY] may be either an entity key or a list key. If KEYl is a
1ist, then the list is reversed. If KEYl is an entity, then the
constituent list is reversed.

Message Description

BAD_LIST_REFERENCE Given key is nil or not an entity
' or a list.

NO_MORE_ROOM No more core memory.

NO_LIST_CREATED Given 1ist is empty.

4-70

UM 560130001
1 January 1987

MALSRT
FUNCTION: Sorts an entity list using the order given in a user defined
function.
FORMAT: MALSRT(KEY1,KEY2, IRC)
INPUT:

KEY1l : ANYKEY
The list of entity or applications to be sorted.

KEY2 : The name of the user defined function for ordering
the list ‘

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: This routine references a user defined function which provides
the order sequence to be applied to the l1ist to be sorted.

ERRORS:: Message Description
BAD_LIST_REFERENCE Given key is nil or not an entity
or a list.
NO_MORE_ROOM No more core memory.
WARNING: NO_LIST_CREATED Given 1ist is empty.

4-71

UM 560130001
1 January 1987

4.4.6 SEQUENTIAL READ AND EXECUTE OPERATIONS

The following table shows routines that process a list sequentially (as if it
were a file):

DESCRIPTION ROUTINE
Read the next entry in a list. MALRD
Setup for reading in a forward direction. MALSTF
Setup for reading in reverse direction. MALSTR
Execute a procedure on an entity or a list of entities. MAEXEQ
Execute a procedure on all entities of a specified KIND. MAKXEQ
Execute a procedure on an entity or a list of entities. MALXEQ
Execute a given procedure on constituents of entity. MAECXQ
Execute a procedure on the users of an entity. | MAEUXQ

The MALSTF and MALSTR set up a list for forward or re.erse reading of an

application Tist. Forward reading is assumed and need not be called explicitly

before a read or an execute function is used. However, after an end-of-list is

{ignaled, the list is disabled. An explicit setup must be done to enable the
ist.

UM 560130001
1 January 1987

MALRD
FUNCTION: Read the next entry in a list.
FORMAT: MALRD(KEY1,KEY2, IRC)
INPUT:

KEY1l : ANYKEY
The entity or 1ist of entities to be read.

OUTPUT:
KEY2 : ENTKEY
The entity of the next list entry. Next depends on
the direction of the read set by MALSTF or MALSTR.

IRC : INTEGER
The return code.

DESCRIPTION: The next entity in the 1ist is returned. Always set the

direction by using MALSTF or MALSTR before the first time this
routine is used to read a list.

ERRORS: Message Rescription

BAD_LIST_REFERENCE Given]kéy is nil or not an entity
or a list.

INVALID_CRB_POSITION Pointer to position of last read of
constituent list is inconsistent.

CRB_ENTRY_NOT_FOUND Pointer to read position not found.

NO_MORE_ROOM No more core memory.

4-73

UM 560130001
1 January 1987

MALSTE
FUNCTION: Setup for reading in forward direction.
FORMAT: MALSTF(KEY1, IRC)
INPUT:

KEY1 : ANYKEY
The entity or list of entities to be processed in a
forward direction.

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: If KEYl is an entity, then the constituent list of KEYl will be

set up.
ERRORS: Message Description

BAD_LIST_REFERENCE ?:ven key is not an entity or a
st. 4 ‘

BAD_ENT_KEY Given key is nil.

INVALID_CRB_POSITION Pointer to position of last read of

constituent list is inconsistent.

CRB_ENTRY_NOT_FOUND :oin:er to direction of read not
ound.

NO_MORE_ROOM No more core memory.

4-74

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

UM 560130001
1 January 1987

MALSTR

Setup for reading in reverse direction.

MALSTR(KEY1,

INPUT:
KEY1 :

IRC)

ANYKEY
The entity or 1ist of entities to be processed in the
reverse direction.

OUTPUT:
IRC : INTEGER
The return code.

If KEYl is an ‘entity then the constituent list of KEYl will be

setup. 5

Message Description

BAD_LIST_REFERENCE ?:ven key is not an entity or a

st.
BAD_ENT_KEY , Given key is nil.
INVALID_CRB_POSITION Pointer to position of last read of
constituent list is inconsistent.

CRB_ENTRY_NOT_FOUND :ointer to direction of read not
ound.

NO_MORE_ROOM No more core memory.

4-75

UM 560130001
1 January 1987

The application-supplied procedure invoked by the "execute" functions must
conform to the declaration shown below:

Procedure PROC(KEY,ENTDEF,DATA, IRC)

INPUT:
1) KEY is an entity key.
2) ENTDEF is the entity ADB declaration.
3) DATA {is a variant data structure used as needed by the
procedure. DATA is the input data structure passed originally
to an EXECUTE function.

OUTPUT:
1) IRC is the return code produced by the "PROC".

The application procedure called from MAEXEQ and MAKXEQ have the following
return code values:

RCC >=0 and RCC <=7
processing 0K
The EXECUTE routine continues processing.

RCC >=8 and RCC <=1S.
procedure_code_error
The EXECUTE routine halts processing.

RCC <0 or RCC>15
procedure_out_of_range
The EXECUTE routine halts processing.

Th$ application procedure called from MALXEQ has the following return code
values:

RCC=0 or RCC=1
processing OK
The EXECUTE routine adds an entity to the output list and
continues processing.

RCC >=2 and RCC <=7
procedure_warning_code
The EXECUTE routine continues processing.

RCC >=8 and RCC <=15

procedure_code_error .
The EXECUTE routine halts processing.

4-76

FUNCTION:
FORMAT:

DESCRIPTION:

EXAMPLE:
ERRORS:

UM 560130001
1 January 1987

MAEXEQ

Execute a procedure on a entity or a 1ist of entities.
MAEXEQ(KEY1,DATA,PROC,RCC, IRC)

INPUT:
KEY1 :

DATA :

PROC :

OUTPUT:
RCC

IRC

ANYKEY

The entity or 1list of entities on which the
application procedure should be performed.

VARIANT

The application defined data structure which either
supplies or receives the values operated on by the
application defined procedure.

ENTRY POINT
The entry point of an applicatipn defined procedure.

: INTEGER

The procedure PROC return code.

: INTEGER

The MAS return code.

The entity, or each entity in a list, 1is passed to the
application-defined procedure. The operation performed on the
entity is determined by the application-defined procedure.

See Sample Programs Section.

Message Description

BAD_LIST_REFERENCE Given key is nil or not an entity
or a list.

PROC_CODE_ERROR

PROC_OUT_OF _RANGE Return error code greater than 15.

NO_MORE_ROOM No more core memory.

4-77

FUNCTION:
FORMAT:

DESCRIPTION:

ERRORS:

WARNING:

UM 560130001
1 January 1987

MAKXEQ

Execute a procedure on all entities of a specified kind.

DATA :

PROC :

OUTPUT:

RCC

IRC

MAKXEQ(KIND,DATA, PROC,RCC, IRC)

INPUT:
KIND :

INTEGER
The KIND value of the entities to be processed.

VARIANT

The application-defined data structure, which either
supplies or receives the values operated on by the
application-defined procedure.

ENTRY POINT
The entry point of an application-defined procedure.

¢ INTEGER

The procedure PROC return code.

: INTEGER

The MAS return code.

Each entity of the specified kind is passed to the
application-defined procedure. The operation performed on the
entity is determined by the application-defined procedure.

Message Description

BAD_LIST_POSITION Schema inconsistent.

PROC_CODE_ERROR

PROC_OUT_OF_RANGE Rgturned error ccde greater than
15.

NO_MORE_ROOM No more core memory.

NO_SUCH_SCHEMA No definition for given kind.

FUNCTION:

FORMAT:

DESCRIPTION:

UM 560130001
1 January 1987

MALXEQ

Execute a procedure on a entity or a list of entities. Construct
an output 1ist of entities as determined by the application
procedure.

MALXEQ(KEY1,DATA, PROC,KEY2,RCC, IRC)

INPUT:
KEY1 : ANYKEY
The entity or 1ist of entities to be processed.

DATA : VARIANT
The application-defined data structure, which either
supplies or receives the values operated on by the
application-defined procedure.

PROC : ENTRY POINT
The entry point of an application-defined procedure.

OUTPUT:
KEY2 : LISTKEY
The 1ist created by this function.

RCC : INTEGER
The procedure PROC return code.

IRC : INTEGER
The return code produced by this operation.

An empty list (KEY2) is created. The entity, or each entity in
sequence {f a Tist is supplied, is passed to the
application-defined procedura. The operation performed on the
entity is determined by the application-defined procedure. When
the application return code of "success," (0 or 1), is returned
from the application procedure, the entity just processed is
added to the result list. When an application error return code
(Tess than 0 or greater than 7) is returned from the application
procedure, MALXEQ is terminated. When an application warning
return code (2 through 7) 1is returned from the application
procedure, the entity just processed is not placed on the result
1ist, but processing continues.

4-79

Prors

ERRORS:

WARNING:

UM 560130001
1 January 1987

MALXEQ (Cont.)
Message Description
BAD_LIST_REFERENCE ?:ven key is not an entity or a
st.)
BAD_ENT_KEY Given key is nil.

FROC_CODE_ERROR
PROC_OUT_OF_RANGE

INVALID_CRB_POSITION
CRB_POS_NOT_FOUND
NO_MORE_ROOM

PROC_WARNING_CODE
NO_LIST_CREATED

4-80

Returned error code greater than

Pointer to position of read of the
constituent 1ist inconsistent.
Pointer to position of read not
found.

No more core memory.

No entities executed sucessfully.

FUNCTION:

FORMAT:

DESCRIPTION:

UM 560130001
1 January 1987

MAECXQ

Given a user-defined procedure, perform this procedure on the
constituents of an entity or list of entities.

MAECXQ(KEY1, DATAREC, PROCNM, KEY2, RRC, IRC)

INPUT:
KEY1

DATAREC :

PROCNM

OUTPUT:
KEY2

RRC

IRC

ANYKEY oo
Key of an entity or an application 1list thats
constituent(s) are to be processed.

BLKDATA
Data to be supplied to the procedure.

ROUTINE
Routine supplied by caller that processes one
entity at a time.

LISTKEY
Key to the 1list of constituents that processed
without error.

INTEGER
Return code of the user-defined procedure.

INTEGER

Return code

0 = Good return

<0 Critical error
>0 Warning

For each constituent of an entity read from the position and in
the direction indicated in its user constituent list, process by
the user-defined procedure. For each entity processed without
error, add to the output list.

4-81

UM 560130001
1 January 1987

MAEUXQ
FUNCTION: Given a user-defined procedure, perform this procedure on the
users of an entity or list of entities.
FORMAT: MAEUXQ(KEY1, DATAREC, PROCNM, KEY2, RRC, IRC)

INPUT:
KEY1 : ANYKEY
Key of an entity or an application 1list thats
user(s) are to be processed.

DATAREC : BLKDATA
Data to be supplied to the procedure.

PROCNM : ROUTINE

Routine supplied by the caller that processes one
entity at a time.

OUTPUT:
KEY2 : LISTKEY

Key to the list of users that processed without
error.

RCC : INTEGER
Return code of the user-defined procedure.

IRC : INTEGER
Return code
0 = Good return
<0 Critical error
>0 Warning

DESCRIPTION: For each user of an entity or an entity on the list of entities,

process by the user-defined procedure. For each user processed
without error, add to the output list.

4-82

UM 560130001
1 January 1987

SECTION 5
GENERAL UTILITIES

This section contains descriptions of available general utility routines, as
shown in the table below.

DESCRIPTION ROUTINE
Get number of different KIND values in the working-form MAECTK
model.
Get KIND value stored at specific position in KIND Tist. MAEKND
Determine if an entity has any users. MAEUSR
Get actual model space used and amount of model free MASMSZ
" space.
Determine the number of entities in the model of a MAKCNT
specified KIND.

5-1

.
P

UM 560130001
1 January 1987

MAECTK
FUNCTION: Get]the number of different KIND values in the working-form
model.
FORMAT: MAECTK (KNDCNT, IRC)
INPUT:
NONE
OUTPUT:

KNDCNT: INTEGER
The number of different KIND values in the
working-form model.

IRC : INTEGER
The return code.

DESCRIPTION: Get t?e number of KIND values in the working-form model from the
KIND 1ist.

NOTE: Works in conjunction with MAEKND.

5-2

FUNCTION:
FORMAT:

DESCRIPTION:

UM 560130001
1 January 1987

MAEKND

Get KIND value at specified position in the KIND 1ist.
MAEKND (KNDPOS , KNDVAL, IRC)

INPUT:
KNDPOS::

OUTPUT:
KNDVAL:

IRC

INTEGER
The position in the standard array of where to get

the KIND value

INTEGER
The KIND value retrieved from the KIND list

: INTEGER

The return code.

Get the KIND value at KNDPOS in the KIND list.

NOTE: Works in conjunction with MAECTK.

5-3

UM 560130001
1 January 1987

MAEUSR

FUNCTION: Determine if an entity has any users.
FORMAT: MAEUSR(KEY1,UEXIST,IRC)

INPUT:
KEY1 : ENTKEY
The entity whose user existence is to be determined.

QUTPUT:
UEXIST: INTEGER
The value indicating if the entity has users or not.

=0 No users exist
=] Users exist

IRC : INTEGER
The return code.

DESCRIPTION: Determines if an entity has any users.

5-4

FUNCTION:

FORMAT:

DESCRIPTION:

UM 560130001
1 January 1987

MASMSZ

Determine actual model used space and model free space (in
bytes). =

MASMSZ(MODS1Z,FRESIZ, IRC)

OUTPUT:
MODSIZ : INTEGER
The total number of bytes used by the model.

FRESIZ : INTEGER
The total number of bytes of free space.

IRC : INTEGER
The return code.

The used model space is calculated by taking the difference of

allocated model space and free model space. This routine can
only be used where the MAS memory manager is used.

5-5

FUNCTION:

FORMAT:

DESCRIPTION:

UM 560130001
1 January 1987

MAKCNT
Determine the number of entities in the model of a specified
KIND.
MAKCNT(KIND,COUNT, IRC)
INPUT:
KIND : INTEGER
The KIND value for which a count is to be
determined.
OUTPUT:
COUNT : INTEGER
The number of entities in the model of the
specified KIND.
IRC : INTEGER

The return code.

If the KIND specified is in the model, determine the number of
entities with that KIND.

5-6

SECTION 6
SAMPLE PROGRAMS

The following pages illustrate uses of the Access Software.
show Create and Get operations for a line.

UM 560130001
1 January 1987

These examples

DESCRIPTION

MAS ROUTINES USED

Create a Line

MAL, MALATC, MAECR, MALD

Get Constituents

MALNO, MALGTK

Get Users

MAEU, MALNO, MALGTK

6-1

Line
Get ysers
PROCEDURE USERS
VAR .
WFFER : ENTRLOCK ;
ne : EXV__NET__COOE ;
KEVE_SMS : ENTXEY ;

NEXT_USER : INTEGER ;
NUN_OF_USERS : INTEGEN ;
o

L1374 : LISTREY ;

UM 560130001

1 January 1987

(GTUSER UST) /
MAEU (KEVE__SMS.KEVLC,IC) ; ,/’-
(* OET NUMGER W LIST *) -__/,/’1
MALNO (KEVLC,JUNM._OF_USERS.MC) ;
WINLE WUM_OF_USERS > 0 00 BEBW
(° GET ENTITY FROM LIST®)
MALGTK (KEVLC,NEXT_USER, KEVE__SMS.INC) ;
(* OFT ADS FROM ENTTTY®)

-

MAEGTR (REVE_SIMS, SUFFERC) ;
- OISPLAY ENTITY mrORMATION

NEXT__USER :» WEXT_USER ¢ 1 ;
NUM_OF_USERS .= NUM_OF_USERS = 1 ;
END ;

€ ;

6-2

Line
Get Constituents
EXAMP.DATA{CHETNTS)
PROCEDURE CHSTNTS;
VAR
SUFFER : ENTOLOCK :
ne : EXT__RET_CODE ;
CNSTWY__XEY : ENTKEY ;
ene : USTREY ;

NUM_OF _DATAENT : INTEGER

UY‘M_':-!:
(° OETEMWINE NUMOER OF CONSTITS *) /
MALNO (WPUTREY,NUM__OF _CONSTITUENTS, IRC)

WRE NUM__OF__CONSTITUENTS > ¢
00 SECW
¢ GET ENTITY KEY FROM LIST *)

UM 560130001
1 January 1987

MALETX (INPVTREY, NEXT_CRSTNT._NO, =
CHSTNT__XEY.IC)
¢ GET ENTITY ADR)
MAEETR (CNSTNT_XEY.IUFFER.AC) ;

USE TWE ATA 9 THE ADS

NEXT_CRETNT_NO :@ WEXT_CRETNT_ND & 1:
WUM_OF _CONSTITUENTS : =
W_OF_ CONSTITUENTS - 1 ;

6-3

S,

UM 560130001
1 January 1987

Line :
i =

EXAMP. DATMCRETLIN) Create Entity = p—
|~

m h m - as am

LENGTN = LLINE :

SYSUSE H

VERSUN

sYSiD

10ENT

OISMA

L)

LN N

O [1] noneon

l

6-4

UM 560130001
1 January 1987

INTROCUCTION

Valuable supplementary information not included eariier in this manual is
included in this section.

Page
A ACCESS SOFTWARE CALLING PARAMETER INDEX. A-1
B ALPHABETICAL ACCESS SOFTWARE ROUTINE INDEX B-1
C ACCESS SOFTWARE RETURN CODE INDEX. Cc-1
D ACCESS SOFTWARE FORTRAN SCHEMA DIAGRAM D-1
E ACCESS SOFTWARE PASCAL SCHEMA DIAGRAM. E-1
F GENERAL TECHNIQUES/GUIDELINES. ¢« . ¢ ¢« o . F-1
G RUN-TIME ENVIRONMENT & & v & ¢ e v e e o v o o o & G-1
INTRODUCTION. . . & . ¢ ¢ ¢ e e e o 6 o s o o o o o o G-1
INTERLANGUAGE CONVENTIONS ¢« « v « . G-2
ESTABLISHING INTERLANGUAGE ENVIRONMENT. G-3
REGISTER CONVENTIONS. ¢ v ¢ ¢ v v v v o G-5
PASCAL DYNAMIC STORAGE AREA « « ¢« . v . G-6
EXAMPLES. . . ¢ &t i e e e e e e e e e e e e e e e e G-8
H ERROR AND WARNING RETURN CODE INDEX. « « « « « . H-1

APP

UM 560130001
1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Routine D Page

MAINIT Initialize the working-form model 4-5
MAINIT (ext_ret_code)

MAKILL Delete the current working-form model 4-6
MAKILL (ext_ret_code)

MAECR Create an entity 4-9
MAECR (entblock, anykey, entkey, ext_ret_code)

MAEC Create 1ist of constituents 4-10
MAEC (anykey, listkey, ext_ret_code)

MAECI Create 1ist of inclusive constituents 4-11
MAECI (anykey, listkey, ext_ret_code)

MAECIK Create 1ist of inclusive constituents by kind 4-12

MAECIK (anykey, ord_kind, 1istkey, ext_ret_code)

MAEU Create 1ist of users 4-13
MAEU (anykey, listkey, ext_ret_code)

MAEUI Create 1ist of users inclusively 4-14
MAEUI (anykey, listkey, ext_ret_code)

MAEUIK Create 1ist of users inclusively by kind 4-15
MAEUIK (anykey, ord_kind, listkey, ext_ret_code)

MAEGKN Get kind value of an entity 4-17
MAEGKN (entkey, integer, ext_ret_code)

MAEGTK Get entity ADB 4-18
MAEGTK (entkey, entblock, ext_ret_code)

MAEUD Update the ADB 4-20
MAEUD (entkey, entdef, ext_ret_code)

MAED Delete an entity or list of entities 4-24
MAED (anykey, listkey, ext_ret_code)

MAEDI Delete an entity or 1ist of entities inclusively 4-25
MAEDI (anykey, listkey, ext_ret_code)

MAEDT Delete test an entity or list of entities 4-26
MAEDT (anykey, listkey, listkey, ext_ret_code)

MAEDTI Delete test an entity or 1ist of entities inclusively 4-27
MAEDTI (anykey, listkey, listkey, ext_ret_code)

MAEDTS Delete test an entity or list of entities 4-28

(output - 3 1ists)

MAEDTS (anykey, listkey, 1istkey, listkey, ext_ret_code)

MAEA Activate an entity or list. of entities 4-30
MAEA (anykey, ext_ret_code)

MAEAI Act{vate an entity or 1ist of entities inclusively 4-31
MAEAI (anykey, ext_ret_code)

MAEAV Find value of entity activation setting §-32

MAEAV (entkey, integer, ext_ret_code)

A-1

)

UM 560130001
1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Description and calling sequence _Page

MAERST Set application flag in all entities in model to “off" 4-34
MAERST (namtyp, ext_ret_code)

MAQURY Determine value of application flag of the entity 4-35
MAQURY (entkey, namtyp, integer, ext_ret_code)

MAUPDT Update value of application flag of entity or 4-36

1ist of entities

MAUPDT (anykey, namtyp, integer, ext_ret_code)

MAECQY Determine whether the user compresses with its 4-37
constituent
MAECQY (entkey, entkey, integer, ext_ret_code)

MAECMP Create a list of constituents which compress with the 4-38
input entity
MAECMP (entkey, 1istkey, ext_ret_code)

MAESWA Set all entities binary switch setting to "off" ! 4-39
MAESWA (ext_ret_code)

MAESWT Set binary switch in an entity or list of entities 4-40
MAESWT (anykey, integer, ext_ret_code)

MAESVL Find binary switch setting of an entity 4-4]
MAESVL (entkey, integer, ext_ret_code)

MALAND "And” of two lists 4-44
MALAND (anykey, anykey, 1istkey, ext_ret_code)

MALNOT "Not" of two lists 4-45
MALNOT (anykey, anykey, listkey, ext_ret_code)

MALOR "Or®" of two lists 4-46

MALOR (anykey, anykey, listkey, ext_ret_code)

MALK Create list of an entities of specified kind 4-48
MALK (ord_kind, listkey, ext_ret_code)
MALKL Create 1ist of an entities of specified kind which are 4-49
found within another list
MALKL (anykey, ord_kind, listkey, ext_ret_code)

MAL Create an empty list - 4-51
MAL (1istkey, ext_ret_code)

MALN Create an empty list of specified size 4-52
MALN (integer, listkey, ext_ret_code)

MALCPY Make a copy of a list . 4-53
MALCPY (1istkey, listkey, ext_ret_code)

MALFND Find position of an entity in a list 4-54
MALFND (anykey, entkey, integer, integer, ext_ret_code)

MALNO Count entities in a list 4-55
MALNO (anykey, integer, ext_ret_code)

MALGTK Get the Nth entity from a 1ist 4-56

MALGTK (anykey, integer, entkey, ext_ret_code)

A-2

UM 560130001
1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Roytine Description and calling sequence Page

MALD Delete a list 4-58
MALD (listkey, ext_ret_code)

MALDA Delete all lists in working-form model 4-59
MALDA (ext_ret_code)

MALDI Delete alist and all lists after it - 4-60
MALDI (anykey, ext_ret_code)

MALOCK Set the 1ist lock flag 4-61
MALOCK (listkey, integer, ext_ret_code)

MALATC Attach entity or list of entities to entity or list 4-63
MALATC (anykey, anykey, ext_ret_code)

MALINS Insert entity or 1ist of entities into a 1ist 4-64
MALINS (anykey, anykey, integer, ext_ret_code)

MALRDE Remove duplicate entities from list 4-65
MALRDE (1istkey, ext_ret_code)

MALREP Replace a 1ist of entities 4-66
MALREP (anykey, anykey, ext_ret_code)

MALRMV Remove entity or list of entities 4-67
MALRMV (anykey, integer, ext_ret_code)

MALROR Reorder a list of entities so that the users appear
at the head of the list 4-68
MALROR (1istkey, ext_ret_code)

MALRPL Replace an entity : 4-69
MALRPL (anykey, entkey, integer, ext_ret_code)

MALRVS Reverse order of 1list 4-70
MALRVS (anykey, ext_ret_code)

MALSRT Sorts an entity list using a user defined function 4-71
MALSRT (anykey, routine, ext_ret_code)

MALRD Read next entity in list . 4-73
MALRD (anykey, entkey, ext_ret_code)

MALSTF Set flag to read in forward direction 4-74
MALSTF (anykey, ext_ret_code)

MALSTR Set flag to read in reverse direction 4-75
MALSTR (anykey, ext_ret_code)

MAEXEQ Execute procedure on an entity or list of entities 4-77
MAEXEQ (anykey, blkdata, routine, ext_ret_code, ext_ret_code)

MAKXEQ Execute procedure on all entities of specified kind 4-78
MAKXEQ (anykey, blkdata, routine, ext_ret_code, ext_ret_code)

MALXEQ Execute procedure on entity or list of entities 4-79
MALXEQ (anykey, blkdata, routine, listkey, ext_ret_code,

ext_ret_code)

MAECXQ Perform this procedure on the constituents of an entity 4-81
or 1ist of entities, given a user defined function
MAECXQ (

MAEUXQ Perform this procedure on the users of an entity or 4-82

1ist of entities, given a user defined function

A-3

UM 560130001
1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX
—Boutine Description and c3]ling sequence Page

MAECTK Get number of different kinds in working-form model 5-2
MAECTK (integer, ext_ret_code)

MAEKND Get kind value at specified position in kind 1ist 5-3
MAEKND (integer, ord_kind, ext_ret_code)

MAEUSR Determine if an entity has any users 5-4
MAEUSR (entkey, integer, ext_ret_code)

MASMSZ Find actual model used space and model free space 5-5
MASMSZ (integer, integer, ext_ret_code)

MAKCNT Determine number of entities in model of specified kind 5-6

MAKCNT (integer, integer, ext_ret_code)

UM 560130001
1 January 1987

ALPHABETICAL ACCESS SOFTWARE ROUTINE INDEX
—Roytine Description
MAEA Activate an entity or list of entities 4-30
MAEAL Activate an entity or list of entities inclusively 4-31
MAEAV Find value of entity activation setting 4-32
MAEC Create 1ist of constituents 4-10
MAECI Create 1ist of inclusive constituents 4-11
MAECIK Create 1ist of inclusive constituents by kind 4-12
MAECR Create an entity 4-9
MAECMP Create a list of constituents with which the input 4-38
entity compresses
MAECTK Get number of different kinds in working-form model 5-2
MAECQY Determine whether the user compresses with its 4-37
constituent
MAECXQ Given a user-defined procedure, perform this procedure 4-81
on the constituents of an entity or list of entities
MAED Delete an entity or list of entities 4-24
MAEDI Delete an entity or 1ist of entities inclusively 4-25
MAEDT Delete test an entity or list of entities 4-26
MAEDTI] Delete test an entity or list of entities inclusively §4-27
MAEDTS Delete test an entity or list of entities 4-28
(output - 3 Tists)
MAEGKN Get kind value of an entity 4-17
MAEGTK Get entity ADB 4-18
MAEKND Get kind value at specified position in kind 1ist 5-3
MAERST Set application flag in all entities in model to "off" 4-34
MAESVL Find binary switch setting of an entity 4-4]
MAESWA Set all entities binary switch setting to "off" 4-39
MAESWT Set binary switch in an entity or list of entities 4-40
MAEU Create 1ist of users 4-13
MAEUD Update entity ADB 4-20
MAEUI Create list of users inclusively 4-14
MAEUIK Create 1ist of users inclusively by kind 4-15%
MAEUSR Determine if an entity has any users 5-4
MAEUXQ Given a user-defined procedure, perform this procedure 4-82
on the users of an entity or 1ist of entities
MAEXEQ Execute procedure on an entity or list of entities 4-77
MAINIT Initialize the working-form model 4-5
MAKCNT Oetermine number of entities in model with specified kind 5-6
MAKILL Delete the current working-form model 4-6
MAKXEQ Execute procedure on all entities of specified kind 4-78
MAL Create an empty list 4-51
MALAND "And" of two list 4-44
MALATC Attach entity or list of entities to entity or list 4-63
MALCPY Make a copy of a list 4-53
MALD Delete a 1ist 4-58
MALDA Delete all 1ists in the working-form model 4-59
MALDI Delete a 1ist and all lists after it 4-60

B8-1

!

UM 560130001
1 January 1987

ALPHABETICAL ACCESS SOFTWARE ROUTINE INDEX

_ Description Page
MALFND Find position of an entity in a list 4-54
MALGTK Get the Nth entity from a list 4-56
MALINS Insert entity or 1ist of entities into a list 4-64
MALK Create list of an entities of specified kind 4-48
MALKL Create 1ist of an entities of specified kind which 4-49

are found within another 1ist
MALN Create an empty list of specified size 4-52
MALNO Count entities in a list 4-55
MALNOT "Not" of two lists 4-45
MALOCK Set the 1ist lock flag 4-61
MALOR "Or® of two lists 4-46
MALRD Read next entry in list 4-73
MALRDE Remove duplicate entities from 1ist 4-65
MALREP Replace 1ist of entities 4-66
MALRMV Remove entity or 1ist of entities 4-67
MALROR Reorder a 1ist of entities so that the users appear 4-68

at the head of the 1ist
MALRPL Replace entity or 1ist of entities 4-69
MALRVS Reverse the order of a list 4-70
MALSRT Sorts an entity 1ist using a user defined function 4-71
MALSTF Set flag to read in forward direction 4-74
MALSTR Set flag to read in reverse direction 4-75
MALXEQ Execute procedure on entity or 1ist of entities 4-79
MAQURY Determine value of application flag for given entity 4-35
MASMSZ Find actual model used space and model free space 5-5
MAUPDT Update value of application flag of entity or §4-36

list of entities

B-2

UM 560130001
1 January 1987

ACCESS SOFTWARE RETURN CODE INDEX
Error type Code
NO_ERRORS_DETECTED 0
BAD_ENT_KIND 1
INVALID_CREATE 2
CANT_CREATE_LIST 3
MAS_INIT_FAILED 4
INVALID_UPDATE 5
CANT_UPDATE_ENT 6
CANT_CREATE_ENT 7
CANT_VERIFY_CONNECT 8
INVALID_CONNECTION 9
CANT_CONNECT 10
ABSENT_INPUT 11
INVALID_GET 12
NDS_OP_COMPLETE 13
BAD_LIST_POSITION 14
MAXIMUM_LIST_SIZE 15
BAD_LIST_MOVE_COUNT 16
BAD_LIST_REFERENCE 17
BAD_ENT_KEY 18
DUPLICATE_SCH 19
DUMP_ERROR 20
BAD_ENT_SIZE 21
BAD_SCH_KIND 22
PROC_CODE_ERROR 23
PROC_OUT_OF _RANGE 24
NO_MATCH_FOUND 25
DUPS_NOT_REMOVED 26
INVALID_DELETE 27
BAD_ENTITY_ON_USER_LIST 28
BAD_DELETE_KEY 29
EMPTY_MODEL 30
ARG_OUT_OF _RANGE 31
INVALID_CRB_POSITION 32
CRB_ENTRY_NOT_FOUND 33
INVALID_FLAG_NAME 34
CANT_MARK_ENTITY_DELETE 35
ST1ZE_NOT_CARE_ENOUGH 36
RTS_NOT_IN_WORKING_FORM 7
CORE_NOT_AVAILABLE a8
NOT_ENOUGH_CORE_FOR_INIT 39
ABSOLUTELY_NO_MORE_CORE 40

c-1

Warning type

OKW

NO_SUCH_SCH
PROC_WARNING_CODE
EMPTY_DELETE_LIST
EMPTY_EXCEPTION_LIST
END_OF_LIST
NO_LIST_CREATED
EMPTY_MARK_LIST

-1
-2
-3
-4
-5
-6
-7

UM 560130001
1 January 1987

FORTRAN
APPLICATION
PROGRAM

COMMANDS

v

DATA

Model Access Software

INTERFACE
RO

UM 560130001
1 January 1987

CONCEPTUAL SCHEMA DATA

STRUCTURES

FEATURES

DETAIL TOLERANCES
PART

GEOMETRY

TOPOLOGY

D-1

UM 560130001
1 January 1987

ACCESS SOFTWARE PASCAL SCHEMA DIAGRAM

PASCAL
APPLICATION
PROGRAM

COMMANDS DATA

MODEL ACCESS SOFTWARE
INTERFACE

CONCEPTUAL SCHEMA DATA STRUCTURES

FEATURES DETA%L TOLERANCES GEOMETRY TOPOLOGY
PAR

E-1

UM 560130001
1 January 1987

GENERAL TECHNIQUES/GUIDELINES

Avoid creating long 1ists of entities:
-Lists are processed sequentially
-Lists use model space

Do not use ENTKEY as a memory address:
-ENTKEY does not address the attribute data block of the entity

Avoid "nil1" keys:
-Abend or nil pointer checking errors may be caused

Delete application 1ists when no longer needed:
-Application lists use memory
-Application 1ists slow deletion of entities

Always test the MAS interface return code:
-RC = 0 normal return
-RC < 0 warning message
-RC > 0 critical error

Reset the process bit to "off" when it is no longer needed.
Define the KIND and LENGTH fields in the ADB.

When MALRD is used in conjunction with one .of the following interface
routines:

MAED MALINS
MAEDI MALRMV
MAL

the position of sequential reading is incremented/decremented if an
interfa;e function modifies the list.

Do not use MALGTK and one of the above routines because the local variable
position cannot be adjusted by the MAS package.

F-1

P IR

UM 560130001
1 January 1987

For example:
VAR NUM_IN_LIST: = INTEGER
BEGIN
FOR I = 1 TO NUM_IN_LIST Do
MALGTK (LISTKEY, NUM_IN_LIST, ENTKEY1):
MAED (ENTKEY1l, LISTX):
END:

As each entity is deleted, it is removed from the LISTKEY 1ist, but I
is not adjusted.

Witn the exception of MAL and MALK, empty lists will not be created. If an
interface function has an output LISTKEY and the 1list is empty, the list
will not be created and the LISTKEY will be NIL. A warning return code
will indicate this situation.

F-2

UM 560130001
1 January 1987

RUN-T

INTRODUCTION

The Access Software consists of a set of Pascal procedures that provides an
interface to the working form model for application programs. When the
application programs are written in a language other than Pascal, the run-time
environment must satisfy the interlanguage communication requirements of all
the languages involved. This appendix discusses the MAS interlanguage
environment conventions and the composition of the Pascal dynamic storage
areas. Examples are given for a FORTRAN program that uses MAS routines.

G-1

UM 560130001
1 January 1987

INTERLANGUAGE CONVENTIONS

When the MAS subprograms were compiled, they were defined as PROCEDUREs using
SUBPROGRAM declarations. The subprogram declaration is an extension to IBM
Pascal that allows a Pascal procedure to be called from any language. The
subprogram declaration supplies special code at compile time. At run-time,
this code determines the nature of the calling program. For non-Pascal calls,
two macros are invoked: Prolog and Epilog. Before the procedure executes,
Prolog locates the Pascal Communication Work Area (PCWA) as well as the main
and local Dynamic Storage Areas (DSA) and establishes the Pascal register
conventions. On exit, the Epilog macro restores the register conventions of
the caliling program.

The effect of this method is that no special action is required by the calling
program, regardless of its language.

The SUBPROGRAM declaration may also be applied to application procedures, which

may then be called from, and make calls to, routines of any language. This
method is limited to Pascal PROCEDURES and does not apply to Pascal FUNCTIONS.

G-2

UM 560130001
1 January 1987

ESTABLISHING INTERLANGUAGE ENVIRONMENT

The preferred (and easiest) approach is to insert the entire application into a -
This method assures correct error handling.

Pascal program.

Pascal

FORTRAN

FORTRAN

~e

Figure G-1

G-3

UM 560130001
1 January 1987

An alternate approach is to insert the portion of the application that makes
the MAS calls into a Pascal procedure that is declared MAIN. The error
handling capability, however, may be Timited in this method. Note that the
model created within the scope of the MAIN Pascal procedure is active only
during the execution of the MAIN procedure; new models may be created in
subsequent calls to a similarly declared MAIN procedure. Upon termination of
the last call to a Pascal MAIN, the procedure PSCLHX should be called to
terminate the Pascal run-time environment.

FORTRAN
MAIN
FORTRAN
MAS
FORTRAN
PSCLHX
Figure G-2

Examples of the Pascal source and link-edit instructions are included at the
end of this appendix.

G-4

UM 560130001
1 January 1987

REGISTER CONVENTIONS

The interlanguage environment establishes the correct register conventions
automatically. The following information is included for use from the IBM TEST
mode.

Register = Pascal Non-Pascal
15 Branch address Branch address

14 Return address Return address

13 Local DSA address (1) Save area address

12 PCWA address

11 Main DSA address

1 Address of parameter Address of parameter

Tist (2) (3) 1ist
0 (2) Function value

NOTES: (1) The save area is the first entry in the local DSA, which is
established by a Pascal caller.

(2) The function value for Pascal 1s referred to by the first entry
in the parameter 1ist. Pascal input parameters for a function
are referred to as starting with the second entry in the
parameter list.

(3) The parameter 1ist contains addresses of parameters except for

pass-by-value of scalars, pointers, or sets, in which case the
parameter list contains the actual value.

G-5

UM 560130001
1 January 1987

PA NA
The dynamic storage area of the Pascal main program contains global variables
(including any commons). Each Pascal procedure invoked has a local dynamic
storage area containing local variables. The dynamic storage areas are
contained in a LIFO stack.
In general, the DSA of a routine consists of five sections:

(1) The local save area (144).

(2) Parameters passed in by the caller.

(3) Local variables required by the routine.

(4) A save area required by any routine that will be called.

(5) Storage for the largest parameter 1ist to be built for a call.

Sections 1 and 2 are allocated by the calling routine; Sections 3, 4, and 5 are
allocated by the Prolog of the called routine.

Every DSA 1is at least 144 bytes 1long. This is the storage required by
Pascal/VS for a save area. The local variables and parameters of the routine
are mapped within the DSA starting at offset 144.

Upon entering a routine, Register 1 points 144 -bytes into the DSA of the
routine, which is where the parameters passed in by the caller reside.

Upon invocation, Register 13 points to the base of the DSA of the caller, which
is where the save area of the caller is located. Figure 3 illustrates the
condition of the stack and relevant registers immediately upon the start of the
routine.

REG 13 o=e>

To replace |===>
REG 13

REG 1 -=e>

Top of stack -~ >

Caller’s save area

Caller’s .
local variables

Local save area
(144 bytss)

Parameters

REG 1 ooy
set here
for calls

Next stack top ->

l.ocal variables

-

Save ma
of any routines
yet to be invoked

Parameter list to
be built for calls
to other routines

Figure G-3

G-7

UM 560130001
1 January 1987

Start of DSA of caller

Start of DSA of called
routine

144-bytes into DSA

Storage not yet to be
allocated

Start of DSA of routine yet
to be called

144 bytes into this DSA

EXAMPLES

UM 560130001
1 January 1987

EXAMPLE 1: PASCAL PROGRAM (PASMAIN) THAT INVOKES FORTRAN MAIN

PASCAL PROGRAM

PROGRAM PASMAIN;
PROCEDURE MAIN; FORTRAN;
BEGIN

MAIN;

END.

LINKEDIT INSTRUCTIONS
INCLUDE APLLIB(PASMAIN)
INCLUDE APLLIB(APL)

INCLUDE MASLIB(MAS)
ENTRY PASMAIN

Invoke FORTRAN main.

FORTRAN main object,
list of objects including FORTRAN main,
or LOAD module including FORTRAN main.

where SYSLIB allocation includes SYS1.PASCLIB.

G-8

UM 560130001
1 January 1987

EXAMPLE 2: PASCAL PROCEDURE (PASSUB) INVOKED BY FORTRAN MAIN THAT INVOKES
FORTRAN SUBROUTINE (FORSUB)

PASCAL _PROCEDURE
SEGMENT PASSUB;
PROCEDURE PASSUB (....);MAIN; FORTRAN MAIN may pass parameters to the

PASCAL subroutine.
PROCEDURE PASSUB;
PROCEDURE FORSUB(....);FORTRAN; PASCAL MAIN may pass parameters to the

FORTRAN MAIN.
BEGIN
FORSUB(....); é:;okes FORTRAN subroutine that calls
end;)
EORTRAN MAIN PROGRAM
CALL PASSUB(....)
CALL PSCLHX
LINKEDIT INSTRUCTIONS
INCLUDE APLLIB(APL) List of objects including FORTRAN MAIN

or LOAD module including FORTRAN MAIN.
INCI JOE APLLIB(PASSUB)
INCLUDE MASLIB(MAS)
ENTRY APL
"~ NAME APL

where SYSLIB allocation includes SYS1.PASCLIB.

G-9

UM 560130001
1 January 1987

MAS ERROR AND WARNING RETURN CODE INDEX
ERROR TYPE coot ERROR TYPE CODE
NO_ERRORS_DETECTED 0 ABSOLUTELY_NO_MORE_CORE 40
BAD_ENT_KIND 1 MAINIT_ALREADY_DONE 4]
INVALID_CREATE 2 RULE_DOES_NOT_MATCH 42
CANT_CREATE_LIST 3 ENTITY_NOT_FOUND_LIST 43
MAS_INIT_FAILED 4
INV#LIE_U#DATET 5
CANT_UPDATE_EN 6
CANT_CREATE ENT 7 WARNING TYPE CODE
CANT_VERIFY_CONNECT 8
INVALID_CONNECTION 9 OKW 0
CANT_CONNECT 10 NO_SUCH_SCH -1
ABSENT_INPUT 11 PROC_WARNING_CODE -2
INVALID_GET 12 EMPTY_DELETE_LIST -3
NOS_OP_COMPLETE 13 EMPTY_EXCEPTION_LIST -4 !
BAD_LIST_POSITION 14 END_OF_LIST -5
MAXIMUM_LIST_SIZE 15 NO_LIST_CREATED -6
BAD_LIST_MOVE_COUNT 16 EMPTY_MARK_LIST -7
BAD_LIST_REFERENCE 17 EMPTY_MARK_N_EXCEPTION -8
BAD_ENT_KEY 18 EMPTY_DELETE_N_EXCEPTION -9
DUPLICATE_SCH 19 EMPTY_MARK_N_DELETE -10
DUMP_ERROR 20

BAD_ENT_SIZE
BAD_SCH_KIND
PROC_CODE_ERROR
PROC_OUT_OF_RANGE
NO_MATCH_FOUND
DUPS_NOT_REMOVED
INVALID_DELETE
BAD_ENTITY_ON_USER_LIST
BAD_DELETE_KEY
EMPTY_MODEL
ARG_OUT_OF_RANGE
INVALID_CRB_POSITION
CRB_ENTRY_NOT_FOUND
INVALID_FLAG_NAME
CANT_MARK_ENTITY_DELETE
SIZE_NOT_LARGE_ENOUGH
RTS_NOT_IN_WORKING_FORM
CORE_NOT_AVAILABLE

NOT_ENOUGH_CORE_FOR_INIT

NN
OV OV 5o DN e

W
O WO~

W (W W W
W N

w w
™~

39

H-1

